DPS DAY 2023

IISER Kolkata
17-18 ${ }^{\text {th }}$ March 2023

Graph Polynomials \& Topological Entanglement Entropy

Entropy

(1932) Introduction of math framework for quantum mechanics by John von Neumann

(1927) Lev Landau \& Neumann introduced density matrices to study quantum states of a physical system
If $\rho=$ density matrix, then $S(\rho)=-\operatorname{trace}(\rho \ln \rho)$ is the von Neumann entropy.

Entanglement \& Order

(von Neumann) entropy is a quantitive measure of entanglement in a quantum system. It measures local and non-local quantum correlations.
There is a notion of topological order in quantum matter. Microscopically, these correspond to long-range quantum entanglement.

The ground state of a quantum-mechanical system is its stationary state of lowest energy.

Topological Entanglement Entropy

Kitaev and Preskill (2006) showed that if we consider a planar disk A of radius $L / 2 \pi, L$ being sufficiently large, then in the ground state we have

$$
S(\rho)=\alpha L-\gamma+\cdots
$$

- The ellipsis is a sum of terms that vanish as $L \rightarrow \infty$.
- The term γ is geometry independent.
- γ captures global features of entanglement in ground state.

We define $-\gamma$ to be the topological entanglement entropy.

TEE: Example I

We shall often refer to $-\gamma$ as either TEE or $S_{\text {topo }}$.
We have a planar CSS (collection of subsystems) with 3 regions.

Note that the tripartite information

$$
I_{3}(A, B, C):=S_{A}+S_{B}+S_{C}-S_{A B}-S_{B C}-S_{A C}+S_{A B C}=-\gamma
$$

TEE: Example II, III

Consider the CSS with 3 regions arranged in an annulus.

Let $I_{3}(A, B, C)=S_{A}+S_{B}+S_{C}-S_{A B}-S_{B C}-S_{A C}+S_{A B C}$.
In both cases, $I_{3}=-2 \gamma=2 S_{\text {topo }}$.
The factor of 2 is the Euler characteristic χ (of S^{2})!

A GENERALIZATION

Question How to generalize the tripartite information I_{3} to a CSS with N subsystems such that

- the CSS may lie on a (non-planar) surface
- works for all arrangements of CSS
- and captures $S_{\text {topo }}$?

Assumption (i) Any two subsystem in a given CSS may not overlap but can intersect only along its boundary.
(ii) Three of more subsystems do not intersect.

Answer For planar annular arrangement of CSS (say $N=4$),

$$
\begin{aligned}
I_{4}(A, B, C, D)= & \left(S_{A}+S_{B}+S_{C}+S_{D}\right)-\left(S_{A B}+\cdots+S_{C D}\right) \\
& +\left(S_{A B C}+\cdots+S_{B C D}\right)-S_{A B C D}
\end{aligned}
$$

Multipartite captures TEE

Theorem [Patra, -, Lal] We have $\left|I_{N}\right|=\chi S_{\text {topo }}$ for any annular arrangement.

The annular arrangement could be as in Example II as well as III, i.e., if we have A_{1}, \ldots, A_{N} subsystems forming the CSS, then the arrangement of the totality of A_{i} 's should look like an annulus. However, each A_{i} may have many components.

Properties
(A) Multipartite information is preserved under

- attaching self loops
- attaching nearest neighbour handles

(B) Multipartite information is annihilated under
- adding a disjoint subsystem
- adding a short-circuit

(A)

From CSS to Graphs \& Back

Warning You have to assign a vertex for each component of A_{i}. But now vertices assigned to one subsystem A_{i} will have the same colour!

How do we go from a graph to CSS? Thicken!

Graph Polynomial

Theorem [Bhasin, -, Patra, Lal] For any vertex coloured graph Γ embedded in a surface, there is a polynomial $\beta_{\Gamma}(x)$ such that the multipartite information is $\beta_{\Gamma}(-1)$.
A fixed graph may have many non-isomorphic embeddings in a fixed surface. The polynomial may also be different, thereby distinguishing the embeddings.

References

Unveiling Topological Order Through Multipartite Entanglement
S. Patra, S. Basu, S. Lal

Phys. Rev. A, 105, 052428 [2022]
Graph Polynomials for Coloured Embedded Graphs: A Topological Approach
D. Bhasin, S. Basu, S. Patra, S. Lal
arxiv: 2204.13876

