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Foreword

These are notes of lectures I have been giving at the Department of Physical Sciences (DPS),
IISER-Kolkata for the course on introductory Quantum Mechanics (PH2201) over the years.
I am very thankful to Ms. Mounica Mahankali, Mr. Abhirup Mukherjee and Mr. Som Dev
Bishoyi for kindly typing up the first version of the lectures notes (along with drawing and
including several figures) so meticulously. Any errors, typographical or otherwise, can be
laid at my door. Please do email me with corrections.

The intention of the lectures is to provide a (hopefully gentle!) introduction to the theo-
retical machinery of quantum mechanics. Even as attention has given towards covering the
phenomenology of quantum mechanics, an effort has also been made to provide adequately
the mathematical underpinnings of the subject. Given their venerable status, almost all the
topics covered within these areas are well-known and covered in detail in several places. I
have tried to bring things together in my own way. The material has been separated into first
covering the basics and leads to a presentation of some advanced topics. The classification
of topics into basic and advanced is certainly subjective, and I trust that upon strengthen-
ing her/his fundamentals, the reader will find passage through some of the advanced topics
easier as well as informative.

The topics covered are in keeping with the syllabus that has evolved at IISER Kolkata
over the years. Certainly, there are many intereting topics that I have not been able to
cover in the lectures, primarily as they are the ambit of more advanced courses in Quantum
Mechanics that are taught at IISER Kolkata. I do not expect that advanced students and
researchers in theoretical physics will find the lectures particularly enlightening. However,
I hope that my lecture notes will prove to be a good companion to the several excellent
textbooks in Quantum Mechanics (of which there are more than stars in the night sky!) for
study by undergraduates (and perhaps even early graduate students) keen to strengthen their
foundations by learning some of the material I have covered. In this sense, I hope that these
lecture notes can act as a springboard on which students can launch deeper explorations of
the fascinating world of Quantum Mechanics.

A word on prerequisites. Even though these lectures are introductory in nature, the reader
will need a sound grasp of the basics of vectors, matrices, determinants and ordinary differen-
tial equations in making quick progress through the material covered. For readers unfamiliar
with these prerequisites, there are several excellent textbooks that impart the basics of these
topics in mathematical physics. I would like to acknowledge many discussions with my
graduate students Santanu Pal, Anirban Mukherjee and Siddhartha Patra, as well as many
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colleagues and former students at IISER-Kolkata whose insight into the subject I have bene-
fited from greatly. Thanks are also due to the students who attended the lectures, and offered
valuable feedback. Unless mentioned specifically, no claims of originality are being made in
either the content or presentation of material covered in these lectures. Indeed, they were
prepared from a thorough consultation of a selection of excellent textbooks already available
on the topics I covered, including:

� Robert Scherrer, “Quantum Mechanics: an accessible introduction”, Pearson Addison-
Wesley, 2006

� D. J. Griffiths, “Introduction to Quantum Mechanics”, 2nd Edition, Pearson Prentice
Hall, 2005

� R. Shankar, “Principles of Quantum Mechanics”, 2nd Edition, Springer, 1994

� E. Merzbacher, “Quantum Mechanics”, 3rd Edition, Wiley, 2004

� R. P. Feynman, R. B. Leighton and M. Sands, “The Feynman Lectures on Physics Vol.
III”, Addison-Wesley, 1965

� F. Schwabl, “Quantum Mechanics”, 4th Edition, Springer, 2007

� J.J. Sakurai, “Modern Quantum Mechanics”, Revised Edition, Addison-Wesley, 1999

� L. E. Ballentine, “Quantum Mechanics: a modern development”, 2nd Edition, World
Scientific, 2015

Several pictures have been taken from various sources on the internet, and I am deeply
grateful to colleagues from all over the world for such excellent figures! I offer my sincere
apologies for not citing them specifically in every instance.

Finally, I invite you to begin your journey into these lectures with a quote from a favourite
fictional character of mine:

To ∞ and beyond!

Siddhartha Lal
Mohanpur, West Bengal, India

January, 2020
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To ∞ and Beyond! (Source: The internet.)
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Chapter 1

Introduction

Through the course of our journey through these lectures, we are going to depart from our
familiar classical world and learn about the fascinating world of quantum phenomena. This
is not an easy passage, as the world around us does not easily show us quantum phenomena.
Our intuition is, instead, built from our observations of the “classical world” around us. I
will, therefore, try to introduce you here to some surprising differences between the classical
and quantum worlds.

1.1 Getting started

Features of the Classical World
1. Our everyday observations tell us that the physical universe is deterministic .
By this we mean that with enough information about a given system, we can predict its
evolution in time precisely!

2. Light consists of waves, while matter consists of particles.
Our understanding of Maxwell’s theory for classical electromagnetism, together with the
field of classical optics, confirms that light is made of waves. On the other hand, the view of
the ancient Hindu and Greek philosophers that all matter is constructed from some indivis-
ible units — the atomistic view of matter — is confirmed by experiments starting with the
Brownian motion of particles. All of chemistry is contingent on this view.

3. Physical quantities are continuous variables.
Consider examples of quantities you have measured in the laboratory thus far: energy, linear
momentum, angular momentum, position etc.

4. There exists an objective reality independent of any observer.
In making an observation of a classical system, we never affect the system in the process of
making the measurement.

NONE OF THESE ARE COMPLETELY ACCURATE IN THE WORLD OF
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QUANTUM PHYSICS!

Features of the Quantum World
1. The physical universe is not determistic!

(a) In the quantum world, the various outcomes of any process have probabilities associated
with them: we cannot predict the exact result with certainty.

(b) Uncertainty is an intrinsic property of the quantum world, and has nothing to do with
our ability to make accurate observations of the world around us.

1.2 The Schrödinger’s Cat gedanken

For an illustration of both these (seemingly mysterious) concepts, consider the famous exam-
ple of the Schrödinger’s Cat gedanken (or “thought experiment” in the German language).

Figure 1.1: A schematic diagram of the Schrödinger’s Cat thought experiment. See discussion
in text. Disclaimer: No such experiment has ever been carried out with a real cat! Source:
The internet.

The gedanken is straight-forward. A cat is placed in an opaque box together with a ra-
dioactive source, a Geiger counter that can detect the radioactivity and a vial of poison gas.
Any radioactive source has a well-defined lifetime, i.e., a definite fraction of the population
of the atoms will have undergone radioactive decay within the lifetime. The decay process
is, however, probabilistic; this means that at any given time, we can associate a probability
that a given atom will have undergone radioactive decay. Now, if during the time the cat is
kept in the box, the radioactive source undergoes decay, the Geiger counter will sense this
and break the vial of poison gas, killing the cat. Thus, upon opening the lid of the box, we
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will find the cat to be dead. On the other hand, if the source does not decay, the cat will be
alive upon observation.

Figure 1.2: A schematic diagram of the probability for observations of the “Dead” and
“Alive” states in the Schrödinger’s Cat thought experiment by continuous classical observa-
tions. See discussion in text.

Now this is where things become strange. While in the classical world, the cat would have
been either Dead or Alive with perfect precision, it exists in a strange admixture of both
possibilities within the quantum world (i.e., with the box closed!). For instance, if we carry
out the gedanken with a large number (say, a million) of identical set-ups, each of which is
being continuously observed by a classical observer for a time T (i.e., with the lid of the box
open) and the distribution of all million outcomes then plotted in a histogram, we should
either find a histogram of the kind shown in Fig.1.2(a) or Fig.1.2(b) depending on whether
the class is alive or dead at time T . This is completely consistent with our knowledge of the
classical states of the cat.

Figure 1.3: A schematic diagram of the probability for observations of the “Dead” and
“Alive” states in the Schrödinger’s Cat thought experiment by a classical observer who only
observes the state of the cat after a certain time interval T . See discussion in text.

However, as mentioned above, the cat can exist in a linear superposition of the two classical
probabilities in the quantum world. For instance, for an equal probability admixture of the
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classical states of “Alive” and “Dead”, we can think of the “Quantum Mechanical State” of
the cat within the closed box as being:

|ψQuantum Cat⟩ =
1√
2
(|Alive⟩+ |Dead⟩) , (1.1)

PAlive = (
1√
2
)2 =

1

2
= PDead , (1.2)

where the P s are the probabilities for the classical states of “Alive” and “Dead” (see Fig.1.3).
Such an admixture tells us that (i) the cat is dead or alive with well-defined probabilities. As
with the gedanken protocol set out above, these probabilities will be revealed if we were to
carry out similar measurements on a large number of identical setups of the gedanken, and
only if the observations are taken after a time interval T has elapsed with the lid of the box
closed (allowing for the quantum state of the cat to be realised). Further, the uncertainty in
our knowledge of the state of the cat (i.e., whether it is alive or dead) arises from its state
being an admixture of the two, and has nothing to do with our ability to observe it once we
open the box. Thus, the passage from the quantum to the classical world can be charted
when the probability for a certain outcome becomes perfect (i.e., 1).

Figure 1.4: The wavefunctions for the symmetric and anti-symmetric states of a quantum
particle placed in a double well potential. The symmetric state is lower in energy than the
anti-symmetric one due to quantum tunneling. Source: The internet.

A disclaimer: this gedanken has never been implemented in the laboratory with cats (and
hopefully, never will be!). Further, as my 11 year old daughter pointed out, a real cat would
have died of suffocation (or even boredom!) first. (Yes, we physicists often miss the obvious
truths!) However, versions of this experiment with atoms in a superposition of two classical
states have been conducted, e.g., quantum particle in a double well potential.

2. Both light and matter displays properties of waves as well as particles!
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This is called “wave-particle duality”. For instance, the Schrödinger’s Cat gedanken gives a
“wave-like” linear superposition of possible classical states to the quantum state of a creature
clearly composed of particles. It is important to note, however, that any given experiment
shows either a wave-like property or a particle-like property, but never both simultaneously.
Nevertheless, it is amazing to consider the fact that different experiments show very different
features of the same system!

3. Physical quantities can have discrete values, i.e., they may be quantised.
The word “quanta” comes from the ancient Greek word for a discrete unit. The phenomenon
of quantisation is at the heart of all quantum phenomena: it helps us understand blackbody
radiation, the photoelectric effect, the stability of the atom and so much more!

4. A System and its Observer are entangled with one another in the quantum world:
the observer affects the system through the process of measurement. Words like “entangle-
ment” and “measurement” need careful explanation, and I will dwell on this in more detail
in one of the final chapters.

1.3 A historical background

If all of this has left you confused, worried and/or excited, then thats fine. Everything that
I mentioned above is not only counter-intuitive, it is plain outrageous! Then why believe it?
Because it works! And it has taken us around 120 years to come to terms with the intrinsic
“strangeness” of quantum mechanics.

Indeed, around 1900, most physicists were convinced that almost everything could be un-
derstood using the conceptual pillars of classical mechanics, electromagnetism and ther-
modynamics. Very few experimental puzzles remained to be understood, e.g., Blackbody
radiation, the Michelson-Morley experiment, the photoelectric effect, Brownian motion and
diffusion etc. It is quite sobering to consider that it was these same experiments that went on
to shake the very foundations of physics, and gave birth to the fields of quantum mechanics
and statistical mechanics.

Quantum mechanics took roughly three decades to be formalised, with a lot of the action
in the 1920s. Some of the greats involved in this effort are shown below from the famous
Solvay Conference in 1927. Please note that among all the Nobel prize-winning luminaries
in that photograph, none is more distinguished than Madame Curie (who happens to be the
only double Nobel prize winner among them all!). While the epicentre of the action was in
Europe (and mostly Germany and France), people from all over the world contributed to this
effort. Noteworthy contributors from India included Prof. Satyendranath Bose and Prof. C.
V. Raman. While the latter won the Nobel prize for his contribution (the “Raman effect”),
the former richly deserved one (but was never awarded it) for the particles (“bosons”) that
bear his name. Some small comfort can perhaps be taken from the fact that since all “force”
particles are classified as bosons, his legacy extends far beyond the narrow purview of any
award.

Importantly, Quantum mechanics led to the discovery of new fields of study in atomic,
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Figure 1.5: A photograph of the participants at the famous Solvay Conference in 1927. Many
of the founding greats of quantum mechanics were present. Source: The internet.

Figure 1.6: Left: Prof. Satyendranath Bose. Right: Prof. C. V. Raman Source: The
internet.
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nuclear, particle and condensed matter physics! This journey has revolutionised not only
our view of the universe around us, but also led to a surge in technological progress over the
past century. In a photo below, representative examples of our progress involve the creation
of a quantum computer by Google in 2019, and the experimental finding of a single-sheet of
Carbon atoms, Graphene, in 2005 by Novoselov and Geim. Also, marvel at the picture given
below of a superconducting sample “floating” above a magnet due to the Meissner-Ochsenfeld
effect (and the sumo wrestler standing on such a levitating superconducting slab in the
accompanying picture) at very low temperatures. Superconductivity is an excellent example
of quantum mechanics at the macroscale. A challenge would be to obtain a superconductor
at room temperatures! Even more importantly, physics is at its heart an empirical science:

Figure 1.7: Left: Google CEO Sundar Pichai standing beside the quantum computer built
in 2019 by Google. Right: Graphene, a single sheet of Carbon atoms, is a wonder material.
Source: The internet.

Figure 1.8: (Left) The Meissner-Ochsenfeld effect for the expulsion of magnetic flux from a
superconductor, observed spectacularly in the form of a block of a superconductor floating
above a permanent magnet. (Right) A Sumo wrestler on a levitating superconductor.

experiments often lead the way in uncovering new phenomena and theories are then built to
understand them. So it was with the birth of quantum mechanics. Thus, in beginning our
journey into the world of quantum mechanics, it is well worth exploring the experimental
puzzles that heralded the quantum revolution, and understanding their resolution.
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Chapter 2

The Origins of Quantum Theory

2.1 Solving the Blackbody Radiation Spectrum Puzzle

2.1.1 Blackbody Radiation

Though it does not provide the most compelling evidence for quantum mechanics, it is of
historical importance. The perfectly “black body” absorbs all radiation incident on it and
reflects nothing. There is more: the blackbody is special in that it emits radiation of all
frequencies.

Kirchoff

Kirchoff’s law: Conservation of heat current in a system which is in thermal equilibrium
with its surroundings ⇒ the rate of heat absorption = the rate of emission .

Thermal equilibrium ⇒ Temperature of System = Temperature of surroundings .

This law says nothing about the frequency (ν) of the radiation absorbed and emitted, i.e.,
it is independent of ν. Without this concept, a body would spontaneously heat up or cool
down! A practical example of a blackbody is a cavity with a tiny aperture. Light inside the
cavity is absorbed, reflected & emitted by its blackened walls and spends a very long time
within the cavity before escaping. In this way, the cavity is filled with blackbody radiation,
and the aperture acts like the blackbody absorber and emitter.

Boltz-
mann

Stefan

The total power emitted by a black body follows the Stefan-Boltzmann law

P = σAT 4 , (2.1)

where σ = 5.67× 10−8Js−1m−2K−4 is the Stefan-Boltzmann’s constant, A is the surface area
of the blackbody and T is its temperature. As we will soon see, Boltzmann showed how the
T 4 could be obtained from thermodynamic considerations. Total energy density of radiation
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Figure 2.1: Left: A realisation of a blackbody cavity. Right: A plot of Spectral Radiance
vs. wavelength for blackbody radiation. Source: The internet.

inside the blackbody

ρ =
4P

cA
=

4σ

c
T 4 = aT 4 (2.2)

=

∫ ∞

0

ρ(ν)dν (2.3)

where ρ(ν) is the energy density in a given interval of the frequency of emitted radiation
ranging from ν to dν. The constant a = 4σ

c
= 7.56×10−16Jm−3K−4. The spectral density ρ(ν)

is the quantity which tells us how the radiated energy is distributed over the electromagnetic
spectrum, and the total area under the curve gives us the Stefan-Boltzmann law.

Wien

A plot of ρ(λ) versus wavelength is shown above in the right panel of Fig.2.1. The curves
are for different values of temperature T , and show a non-monotonic behaviour (i.e., with a
peak). Equivalent plots can also be obtained for ρ(ν) versus frequency ν (recall that ν ∝ 1

λ
).

Wien’s empirical observation was that the frequency of the peak was proportional to the
temperature: νpeak ∝ T .

Since ν ∝ 1
λ
, we obtain Wien’s displacement law as

λpeak =
w

T
, w = 2.9× 10−3mK . (2.4)

Consequences:
(i) At T ∼ 300K, λpeak is in IR range ⇒ Thermal imaging glasses useful!

(ii) At T ∼ 5000K, λpeak shifts into the optical range ⇒, the temperature within a flame
increases in going from the red part to the white part and finally the blue part!
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Figure 2.2: Left: A view of wildlife through thermal imaging glasses, showing the ther-
mal/heat map of IR radiation emitted by the body. Right: Pictures of a lit bunsen burner
displaying various parts of the flame. Source: The internet.

2.1.2 Classical theory (heuristic derivation)

Consider a collection of E-M waves inside a blackbody cavity at temperature T , i.e., a su-
perposition of harmonic waves corresponding to the various normal modes of oscillation of
the cavity.

Energy density of Radiation with frequency ν is

ρ(ν) = E n(ν) , (2.5)

where n(ν) is the number density of wave modes within the cavity with frequency ν and E
corresponds to the average energy content of the radiation.

From the classical law of equipartition of energy,

E = kBT , (2.6)

where kB = 1.38× 10−23 JK−1 .

Now, from the fact that the wavenumber for modes within the cavity is given by

k⃗ =
2π

L
n⃗ , n⃗ = (nx, ny, nz) , nx ∈ Z, ny ∈ Z, nz ∈ Z , (2.7)

where n⃗ is the mode index (not to be confused with n(ν)!) and L is the spatial extent of the
system along any one of the dimensions of the cavity (assumed to be a very large 3D cube),
we use the relation

ν =
c

λ
=
c|⃗k|
2π

=
c

L
n , n =

√
n2
x + n2

y + n2
z (2.8)

for e-m waves, together with the differential volume element for the case of n >> 1 (cavity
with a large number of wave modes, such that we can treat the integer n as a continuum
variable) being dV = 4πn2dn to obtain

νdν =
8π

c3
ν2dν . (2.9)
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Figure 2.3: Normal modes/harmonics of a linear cavity. The topmost figure is the funda-
mental or first harmonic, n = 1, the next is the first higher harmonic (n = 2) and so on.
Source: The internet.

In turn, this leads to

ρ(ν)dν = E.n(ν)dν =
8πkBT

c3
ν2dν . (2.10)

RayleighJeans

The above formula is also called Rayleigh-Jeans formula, which as we shall see shortly,
works only in the limit ν → 0! Taking this expression for ρ(ν) at face value, we see that
it is divergent: ρ(ν) → ∞ as ν >> 1, indicating a catastrophe in the UV part of the e-m
spectrum! Clearly, something is wrong.

2.1.3 Planck’s Idea

The average energy is computed by using the probability distribution for the energy in the
range E to E + dE

P (E) =
e
− E

kBT

kBT
, (2.11)
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Figure 2.4: (Left) Normal modes of the cavity distributed in (nx, ny, nz) space of integers.
(Right) The Volume element in Spherical Polar Coordinates. Source: The internet.

which is the Boltzmann distribution. This gives us

Boltz-
mann

E =

∫∞
0
EP (E)dE∫∞

0
P (E)dE

= kBT

∫∞
0
d( E

kBT
) E
kBT

e
−E
kBT∫∞

0
d( E

kBT
)e

−E
kBT

(2.12)

= kBT

∫∞
0
dx xe−x∫∞

0
dx e−x

(2.13)

= kBT . (2.14)

Thus, we see that the Boltzmann distribution leads to the Rayleigh Jeans formula. Note
that in the above, we used the following relation (recall Gamma function integrals)∫ ∞

0

dx x2ne−x
2/a2 =

√
π
(2n)!

n!
(
a

2
)2n+1 . (2.15)

Planck

Planck started the quantum revolution in physics in the year 1900 by quantizing the energy
scale in quanta of radiation frequency ν i.e. E = 0, hν, 2hν, 3hν, ..., where h is the Planck
constant. Then, recomputing the average energy for blackbody radiation, we obtain

E =

∑
E=0,hν,2hν,...EP (E)∑

E P (E)
(2.16)

=

∑∞
n=0

nhν
kBT

e−nhν/kBT∑∞
n=0

e−nhν/kBT

kBT

=
hν

enhν/kBT − 1
. (2.17)
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We can see that this answer for E is quite different from that obtained from classical argu-
ments. In obtaining the answer, we used the following relations

1 + x+ x2 + x3 + . . . =
1

1− x
(2.18)

1 + 2x+ 3x2 + 4x3 + . . . =
1

(1− x)2
. (2.19)

This gives us

ρ(ν)dν = En(ν)dν (2.20)

=
8π

c3
ν2dν

hν

enhν/kBT − 1

=
8πh

c3
ν3

enhν/kBT − 1
dν (2.21)

→ 8πkBT

c3
ν2dν for hν << 1 (Rayleigh-Jeans limit) (2.22)

→ 8πhν3

c3
e−nhν/kBT for hν >> 1 (Wien limit) . (2.23)

Thus, we find the total energy density ρ as

ρ =

∫ ∞

0

dνρ(ν) (2.24)

=
8π

c3h3
(kBT )

4

∫ ∞

x=0

dx
x3

ex − 1
(x =

hν

kBT
)

=
8π5k4B
15c3h3

T 4 as

∫ ∞

x=0

dx
x3

ex − 1
=
π4

15
, (2.25)

= a T 4 where a =
8π5k4B
15c3h3

. (2.26)

This expression for ρ gives us the correct T 4 dependence of the Stefan-Boltzmann law, and
gives the Stefan-Boltzmann constant as

σ = a× c

4
=

8π5k4B
15c3h3

× c

4
(2.27)

=
2π4k4B
15c2h3

. (2.28)

Using the values for σ = 5.67 × 10−8Js−1m−2K−4, c = 3 × 108ms−1 and kB = 1.38 × 10−23

JK−1, we obtain h = 6.6626× 10−34Js.

Finally, from the expression for ρ(ν), we can find the νmax for which ρ(ν) is a maxima

dρ(ν)

dν
|νmax = 0

= (3− hνmax
kBT

)ehνmax/kBT − 3 , (2.29)
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which is numerically found to be

νmax ≈ 2.8
kBT

h
(Wien’s Law). (2.30)

Planck

Putting in the values of kB, T and νmax obtained from the experiments, we again obtain
h = 6.6626× 10−34Js. In this way, Planck offered a comprehensive explanation of the nature
of the blackbody spectrum, i.e., he resolved any fears of the UV catastrophe by explaining the
origin of the non-monotonic behaviour of the curve for ρ(ν) plotted versus ν. His courageous
step involved quantising the energy variable for e-m radiation. This was a first step taken
towards the theory of quantum mechanics, and thus the proportionality constant h bears his
name.

2.2 The Dual Nature of Light

2.2.1 Wave-like: Diffraction and Interference

Classical optics relies on the wave nature of light. For instance, take the phenomena of
diffraction and interference.

Precisely the same can be done with water waves.

Figure 2.5: Left: Diffraction of waves from a single slit. Right: Inteference of waves from a
double-slit setup. Source: The internet.

2.2.2 Particle-like: the Photoelectric effect

Maxwell’s equations correctly predict the wave nature of light as the propagation of oscil-
lating Electric and magnetic fields. They are backed up by experiments; actually they are
derived from there. But this is not a completely consistent picture of light.
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Figure 2.6: Left: The Photoelectric Effect. Right: A schematic diagram of the apparatus
used for observing the Photoelectric effect. Source: The internet.

In the Photoelectric effect, shining light on a metal surface produces a current. We vary the
frequency (ν) and intensity (I) of the incident light and in the process measure the current
(i) and maximum energy Emax = eV0 of the emitted electrons. This current is called the
“photo-induced current” or “photocurrent”, and V0 is the “stopping potential” required to
cause the current flow to stop.

Typical observations include
(i) Emax = eV0 ∝ ν

and with a universal slope for all metals given by the Planck constant h, and

(ii) photocurrent i ∝ I , and I =
W

A

where i is the photoelectric current, I is the intensity of light, W is the power of the incident
radiation and A is the surface area of the metal on which radiation is incident.

(iii) non-universal intercept of i vs. ν line suggests a minimum (or threshold) energy−eV0,min
that must be paid by the incident radiation hνmin = −eV0,min for a finite photocurrent to be
observed.

Point (ii) is certainly logical, as we expect that the higher the intensity of the incident light,
the greater the number of electrons will be liberated. But why is Emax ∝ ν ?

From classical E-M theory, Emax ∝ I (or the energy of radiation). Einstein suggested in
1905 that light consists of a collection of particles called PHOTONS, carrying energy hν.
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Figure 2.7: Typical experimental observations made for the Photoelectric Effect. Source:
The internet.

Furthermore, he postulated that

EB + Emax = hν ,

where the electrons are bound to the metal surface with a binding energy/work function EB.
EB is therefore the minimum energy required to liberate the electron, and the rest can be
transferred to the electrons as its kinetic energy (Emax).

Einstein

While the intercept (EB) can vary
between metals, the slope (h, Planck’s constant) of the line is universal!
This gives another independent measurement measurement of h, suggesting its fundamen-
tal importance. It also establishes the particle-like nature of light. This explanation won
Einstein the Nobel Prize in 1921.

2.2.3 de Broglie’s Idea

de
Broglie

Davisson

Louis de Broglie postulated that all matter particles have associated with them a wave train
whose wavelength is

λmatter =
h

p
,
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where p is the particle momentum and h is the Planck constant. This suggests that h is truly
a fundamental constant of nature. This can be observed in the Davisson-Germer experiment
on diffraction of electrons.

Heisenberg

Figure 2.8: Left: de Broglie “Matter Waves”. Right: The characterisitic rings observed in
the electron diffraction experiment of Davisson and Germer. Source: The internet.

Heisenberg’s uncertainty principle can also be glimpsed here: for a particle possessing a
definite momentum (i.e, with a vanishingly small variance), while its associated waveform
is everywhere in space! This will render a large variance in its position. Contrast this
with Classical Mechanics, where we can enumerate both its position and momentum with
arbitrary accuracy!

Germer

Quantum tunneling through a barrier can also be understood with de Broglie’s idea. Recall
that for E < V , the particle is forbidden classically to pass through the barrier. However,
by replacing the particle by a wave in quantum mechanics, the waveform can exist under the
barrier, as well as “leak through” the barrier to the other side! Tunnel diodes and scanning
tunneling microscopy (STM) are all applications of quantum tunneling.

2.3 The Dual Nature of Matter

We now turn to the discussion of Feynman on the double-slit interferometer with electrons
(Feynman Lecture on Physics, Vol.III).

2.3.1 Double-slit experiment with pellets

We begin by investigating the case of 1mm sized pellets being sprayed from a gun at a double
slit in a wall with a screen made of wood and a collector which is movable.

Young Feynman

Assume that the pellets do not break in their passage through the slits. Also, that the pellets
arrive in groups at the screen (this is similar to the assumption that the slits act as a source
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Figure 2.9: Above: The phenomenon of tunneling. Below: A “quantum corral” observed via
STM measurements of Iron atoms placed on a Cu surface. Source: The internet.

Figure 2.10: (Left) Double-slit Interference Experiment with Light waves. (Right) Double-
slit Interference Experiment with Matter particles. Source: The internet.

of pellets); the size of these groups is independent of the rate of firing of the gun. Pellets are
caught in the detector one at a time.
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Figure 2.11: Double-slit experiment with pellets. Source: Feynman Lectures Vol.III and the
Internet.

Q: What is the probability that a pellet that passes through the holes in the wall
will arrive at the screen at a distance “x” from the center of the screen?

Probability means the chance that the pellet will reach the detector. It can be measured
by counting the number that arrive at the detector within a particular interval of time, and
then taking the ratio of this number to the total number that hit the screen within this
interval. Or, for a fixed rate of firing, just the number that reached the detector in a given
time interval. When either of hole 1 or 2 are closed, we get the probability distributions
given by P1 and P2, and with both both holes open we get

P12 = P1 + P2

which is the simple addition of probabilities, i.e., no interference as in the case of Young’s
double slit experiment with a light source.

2.3.2 Double-slit experiment with electrons

Use an electron gun as the source (e.g., a tungsten wire heated by a electric current) sur-
rounded by a metallic box with a pinhole. When the box is at a positive voltage with respect
to the wire, electrons that are emitted from the wire will be accelerated towards the walls of
the box; some will escape through the pinhole.

The electrons passing through the pinhole will be assumed to have the same energy. The
double-slit wall can be a metallic sheet with two small holes, and the screen being another
plate with the collector being an electron multiplier. Analogously, the entire screen can
be an array of electron multipliers synchronised via a computer so as to be able to take
simultaneous measurements.

Measurements can take the form of the impulse imparted on the detector: a ”click”, say. Note
that all clicks are sharp, distinguishable but identical in, say, the amplitude of the impulse
imparted. Note also that the clicks appear in no fixed sequence; they can be erratic/random.
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Figure 2.12: Above: Double-slit experiment with light waves. Below: Double-slit experiment
with electron “matter waves”. Source: Feynman Lectures Vol.III.

Several counts made over identical time periods lead to similar results for the collected clicks:
this makes a time-averaged rate of clicks helpful to keep track of.

Now, as the detector is moved up and down the screen, the rate at which the clicks appear can
speed up or slow down, but the amplitude of each click remains unchanged. Also, changing
the temperature of the wire gun slows or speeds up the rate of clicks, but doesn’t change
the amplitude. Further, with two detectors in place, only a single one receives a click at any
point in time (within our ability to resolve ).

So far, everything suggests that the electrons are showing particle like behaviour, just as in
the case of the double-slit experiment conducted with pellets.

Q: What is the probability that an electron arrives on the array at a distance
“x” from the centre?

Keeping the operation of the gun fixed, measure the average rate of clicks at a distance
“x” from the centre. Measurements of P1 and P2 with one of the slits closed appear quite
reasonable!. But what about P12 (i.e., when both slits are open)?
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Figure 2.13: Left: Double-slit experiment with electron “matter waves”. Right: Tonomura
Source: The Internet.

The outcome of the experiment:
P12 ̸= P1 + P2!

The electrons shows interference when both slits are kept open! Not convinced? Take a look
at Tonomura’s video showing a realisation of the experiment.

Proposition: Each electron goes through either hole 1 or hole 2.

Can this be right if P12 shows signature of interference?

Note that

(i) electrons can’t split in two!

(ii) the electrons are highly unlikely to take more complex paths (in through, reverse and
out of the two holes)

This can be ruled out by noting that

(i) the interference pattern shows zeros where either P1 or P2 would have shown a finite
value. Thus, closing one hole suggests the mystery that the number through the other hole
has somehow increased.

(ii) at the center of the pattern, P12 > 2(P1 + P2). This suggests that closing one hole
somehow decreased the number through the other!

Both of the above cannot be true; i.e, they are mutually inconsistent. Thus, complex paths
are ruled out.
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Instead, let us define two complex numbers as A1 and A2 which we call Probability Ampli-
tudes, such that the probabilities are

P1 = |A1|2, P2 = |A2|2 and P12 = |A1 + A2|2 . (2.31)

Conclusion: The electrons arrive like particles at the screen and the probability
of arrival of the particles is distributed just like the distribution of intensity of
a wave!

Since P12 ̸= P1 + P2, the proposition given above is not verified: the experiment does
not yield the information on whether the electron goes through either hole 1 or hole 2! This
means that we cannot decide on which slit the electron goes through.

2.4 Spying on the Electrons

Let us try to watch on the electrons as they pass through the slits. We can do this by putting
a light source in between the slits and the screen : on its way to the detector, an electron
will scatter some light towards us. By placing the light source suitably, we will hopefully
be able to distinguish the slit the electron passes through in terms of a flash of light in the
vicinity of that slit.

Figure 2.14: Double-slit experiment with electron “matter waves” and a light source by
which to spy on which slit the electrons pass through. Source: Feynman Lectures Vol.III.

The result of this gedanken is that every time we find a “click” on the detector, we see a
flash at either A (hole 1) or at B (hole 2), but never both at once! This is irrespective of the
detector position. This leads to the belief that the electrons pass through either of the two
slits, and the proposition holds true (in the presence of a light source) yielding a classical
addition of probabilities (say, P

′
12).

This means that watching the passage of the electrons seems to remove the quantum in-
terference we noted earlier. However, if we switch off the light source and just look at the
screen, we get back the P12 with the interference! Why is this happening?
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Is the light source disturbing the electrons by imparting momentum to them, changing
their trajectories so as to give us P

′
12 instead of P12? Lets check this out by repeating the

gedanken, but by dimming the light source. As we do this, we should observe that the flashes
caused by the scattering do not get weaker; rather, they become intermittent, i.e., there are
occasions when the detector “clicks” but we get no flash.

This happens because some electrons are passing by unnoticed. This coincides with the
reappearance of the P12 interference pattern! Further, this is happening because dimming
the light source reduces the number of the photons that comprise the light source, leaving
their energy unchanged (∝ hν, circa the photoelectric effect). Thus, some electrons escape
without meeting any photons on the way.

We’re a little stuck here: since the flash amplitude is independent of the light source in-
tensity, the only electrons we can observe through flashes are ones that we are disturbing.
So, if we now plot separately (i) the flashes near point A, (ii) those near point B and (iii)
those that pass by unobserved (but are accounted for by the detector clicks), we will get P1,
P2 and P12 respectively for them!

Conclusion: the electrons can they retain their ability to show quantum in-
terference when they are not beign observed.

We note the fact that since the photon momentum

p =
h

λ
,

if we use a very large λ, p→ 0 and the momentum imparted will be almost negligible So, lets
use a very large λ light source (→ red end of the spectrum) for spying on the electrons. As
we gradually increase λ, we will still get P1, P2 and P

′
12 for the 3 kinds of observations. Then

at some point when λ ≳ d (the slit separation), we lose the ability to resolve between which
slit the electron passed through, i.e., flashes for A and B are unresolvable and the flashes
become fuzzy! Remarkably, it is for around this λ that the interference pattern emerges,
i.e., P

′
12 → P12, indicating that the disturbance from scattering off the photons becomes

negligible enough for the interference pattern to emerge.

Conclusion: We cannot find a way to tell which slit the electron went through,
and yet not disturb the interference pattern.

This relates to a fundamental uncertainty of any quantum system and is not a limitation of
the measuring apparatus: the Heisenberg uncertainty principle. So, what about our propo-
sition: is it true or false? We can only say that it appears to be true when we are seeking
to determine which hole/ slit the electron went through. But if we are not trying to do this
(and is not doing so, are not disturbing the system in any way), we must conclude that the
proposition cannot be true, i.e., we cannot determine which slit the electrons pass through!
The inherent or intrinsic indeterminacy of the system has to be taken into account when
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making any analysis and any conclusion/deductions.

For larger sized objects, the associated de Broglie wave form has an extremely short λ,
i.e., oscillations and interference patterns become very fine and the maxima and minima are
very hard to distinguish. Any detection typically involves length scales which encompass
many wavelengths of the probability distribution curve. Thus, such detection will average
over the rapid oscillations, sensing only the envelope. That’s why macroscopic objects such
as humans will always have a well-defined choice for which of the two slits they will go
through, even though the electron doesn’t!

“Once you eliminate the impossible, whatever remains, no matter how improbable, must be
the truth.” Sherlock Holmes.

There is no mathematical theorem that renders quantum mechanics impossible.

Figure 2.15: Smoothened out “envelope” of the rapid oscillations related to the matter waves.
Source: Feynman Lectures Vol.III.

2.5 Fundamental Postulates of Quantum mechanics

(1) Associated with every classical outcome of a quantum experiment/setup is a probability
amplitude ψ. Remember that ψ is a complex valued quantity, ψ ∈ C . Also, ψ is not directly
observable, nevertheless ...

(2) The probability distribution given by P = |ψ|2 is directly observable

(3) For the case of different classical outcomes, the correct way to take account of all of
them is to write the probability amplitude for the entire system as a linear superposition of
all possible outcomes:

ψsystem = ψ1 + ψ2 + .....

Then, the probability distribution shows signature of quantum interference

P = |ψsystem|2 = |ψ1|2 + |ψ2|2 + |ψ3|2 + ... + Quantum Interference terms
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eg. for just ψ1 = |ψ1|eiδ1 and ψ2 = |ψ2|eiδ2

P = |ψ1|2 + |ψ2|2 + 2ψ∗
1ψ2 (2.32)

= P1 + P2 + 2
√
P1P2 cos δ (2.33)

where |ψ1| =
√
P1 , |ψ2| =

√
P2 and δ = δ2 − δ1 is the difference between the phases of the

waveforms ψ1 and ψ2 and leads to the quantum interference. For classical systems, averaging
over rapidly oscillating δ removes the quantum interference terms.

Conclusion for the double-slit experiment for electrons:
Every electron passing through the slits has a matter-wave associated with it. If the wave-
length is of the order of the slit-width, the matter waves will undergo quantum interference,
and involve a probability distribution that has peaks and troughs. However, the observation
of a single electron on the screen is classical, i.e., it appears as a bright dot in Tonomura’s
experiment. The quantum outcome of interference fringes is nevertheless manifested when
we overlay the outcome from repeating this experiment with a million electrons! This is
equivalent to recording the probabilistic pattern in the Schroedinger’s Cat gedanken with a
large ensemble of identical setups being observed by identical observers (as discussed earlier).

Figure 2.16: A schematic diagram of the experimental setup for the Rutherford gold foil
scattering experiment, in which positively charged α particles (that emerge from the ra-
dioactive decay process of the source) are directed at a target thin gold foil. The observation
of large-angle scattering provides strong evidence for the existence of a positively charged
nuclear core within the atom. Source: The internet.

2.6 Bohr’s Atom

Rutherford Bohr
Atom
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Rutherford’s experiment, in which positively charged α particles were scattered off a gold
foil, had already helped establish the picture of a positively charged nucleus surrounded by
negatively charged electrons (that are roaming in orbits).

However, this picture has two problems:

(i) the electrons must undergo centripetal acceleration in their orbits. According to
electro-magnetic theory, an accelerating charge must radiate e-m radiation and lose
energy in doing so. Such an orbit will then become unstable and the electron should
collapse into the positively charged necleus! But no such radiation is observed; the
electron orbits are stable. How can this be?

Rydberg

(ii) an accelerated electron should radiate e-m radiation in a wide range of frequencies.
Instead, radiation of certain discrete wavelengths is observed experimentally when H2

gas is heated through electrical discharge:

1

λ
= R(

1

m2
− 1

n2
) , (2.34)

where m = 1, 2, 3, . . ., n = 2, 3, 4, . . ., n > m and the Rydberg constant R = 1.097 ×
107m−1. Note that this relation was first obtained empirically! The sequence of lines
for m = 1 are called the Lyman series, m = 2 the Balmer series, m = 3 the Paschen
series etc.

Figure 2.17: Left: A schematic diagram of the experimental setup for the observation of
atomic spectra. Right: The atomic spectra of the Balmer series of the Hydrogen atom.
Source: The internet.

What is the correct physical picture for the stable atom, and the radiation that is emitted?
Enter Niels Bohr. He assumed that the angular momentum of the electrons in their
orbits is quantised

Bohr

L = pr = mvr = n
h

2π
= nℏ , n = 1, 2, 3, . . . (2.35)

This quantisation can be understood from de Broglie’s hypothesis as follows: assume that
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Figure 2.18: Left: A schematic diagram of the experimental setup for the observation of
atomic spectra. Right: The atomic spectra of the Balmer series of the Hydrogen atom.
Source: The internet.

the electron forms a standing wave in its orbit around the nucleus, with a circumference
equal to an integer multiple of the wavelength λ

2πr = nλ =
nh

p

L = pr =
nh

2π
. (2.36)

The rest of the way is purely classical physics. For a classical orbit, we must equate Coulomb
and centripetal forces

e2

4πϵ0r2
=

mv2

r

⇒ r =
e2

4πϵ0

1

mv2

together with v =
nh

2πmr
. (2.37)

Solving these two relations together gives

r =
4πϵ0ℏ2

me2
n2 = a0n

2 , Bohr radius a0 =
4πϵ0ℏ2

me2
= 5.29× 10−11m

v =
e2

4πϵ0ℏ
1

n
. (2.38)
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Balmer Lyman

Putting these expressions for r and v in the total energy for the various orbits gives

En =
1

2
mv2 − e2

4πϵ0r

= − m

2ℏ2
(
e2

4πϵ0
)2

1

n2

= −13.6

n2
eV , n = 1, 2, 3, . . . , (2.39)

and 1eV = 1.6×10−19J . The experimentally observed spectral lines are then given by (using
Planck’s formula)

Pfund
Paschen

hν = En1 − En2 , n1 > n2 , (2.40)

and n1 and n2 have the meaning of the initial and final energy levels of the H-atom respec-
tively, and ν is the frequency of the emitted photon. Written in terms of the wavelength λ,
the above relation yields the Rydberg constant as R = 13.6eV/hc = 1.097× 107m−1.

In fact, by using this model, we can understand the various spectral series mentioned earlier,
and their corresponding wavelengths. Also, since n = 1 is the lowest possible energy state,
the electron cannot lose any more energy by emitting radiation. This explains the stability
of the H-atom. Nevertheless, this derivation uses too many notions of classical mechanics
in a regime where they are not applicable: for instance, the electron does not have a well
defined orbit radius or velocity. However, as we will see towards the end of these lectures, a
fully quantum mechanical treatment of the H-atom gives the same spectrum. Clearly, Bohr’s
assumption hits the bulls eye!

Brackett

Figure 2.19: Left: Various Spectral Series in the e-m spectrum. Right: The electronic
transitions in the Hydrogen atom associated with the respective spectral series. Source: The
Internet.

2.7 Conclusions

We have, in this chapter, toured several of the impressive original demonstrations of the
quantum world in the form of blackbody radiation, the photoelectric effect, the electron
double-slit interference experiment and atomic spectra. It is worth noting that the expla-
nations provided for each of these demonstrations needed the quantisation of an observable
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(i.e., an experimentally measurable quantity) that would have taken any value in the classical
world! In itself, this sets the stage for our entry into the world of the quantum.

Further, by carefully noting the duality between the particle and wave aspects of both
electromagnetic radiation as well as matter, we confronted (say) the beautiful demonstration
of interference of matter waves in a double-slit experiment. This led us to formulate certain
postulates for the quantum world. We are now in a position to take our journey yet deeper
by establishing the foundations of quantum mechanics on a firmer mathemetical footing.

Figure 2.20: Source: The internet.
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Chapter 3

The Foundations of Quantum
Mechanics

3.1 Recap: Fundamental Postulates of Quantum me-

chanics

(1) Associated with every classical outcome of a quantum experiment/setup is a probability
amplitude ψ. Remember that ψ is a complex valued quantity, ψ ∈ C . Also, ψ is not directly
observable, nevertheless ...

(2) The probability distribution given by P = |ψ|2 is directly observable

(3) For the case of different classical outcomes, the correct way to take account of all of
them is to write the probability amplitude for the entire system as a linear superposition of
all possible outcomes:

ψsystem = ψ1 + ψ2 + .....

Then, the probability distribution shows signature of quantum interference

P = |ψsystem|2 = |ψ1|2 + |ψ2|2 + |ψ3|2 + .... + Quantum Interference terms

eg. for just ψ1 = |ψ1|eiδ1 and ψ2 = |ψ2|eiδ2

P = |ψ1|2 + |ψ2|2 + 2ψ∗
1ψ2 (3.1)

= P1 + P2 + 2
√
P1P2 cos δ (3.2)

where |ψ1| =
√
P1 , |ψ2| =

√
P2 and δ = δ2 − δ1 is the difference between the phases of the

waveforms ψ1 and ψ2 and leads to the quantum interference. For classical systems, averaging
over rapidly oscillating δ removes the Q.I terms.

37



3.1.1 Heuristic derivation of the Schrödinger equation

SchrödingerBorn

Promulgated by Erwin Schrödinger in 1926, this equation gives a description for the be-
haviour of particles in the quantum world. Following the ideas of wave-particle duality
of matter, the Schrödinger equation (SE) describes the mechanics and dynamics of matter
waves.

Unlike classical mechanics, a particle in quantum mechanics is no longer associated with
a well defined trajectory r⃗(t). Instead, we will deal with the wave amplitude for the particle
as a function of (r⃗,t).

What then is ψ(r⃗, t)? The straight forward answer, thanks to Max Born,is that∫
V

dr⃗|ψ(r⃗, t)|2 ≡ Probability of finding the particle within volume V at time t.

Also,

∫ ∞

−∞
dr⃗|ψ|2 = 1 .

The second relation is called the “normalisation condition” (or “square integrability” condi-
tion) for ψ, and all physically realizable solutions ψ must obey this condition. Further, all
other physical observables of the particle are also related to ψ(r⃗, t).

Figure 3.1: A simple waveform in 1D: y = A sin
(
2πx
λ

)
. Source: The internet.

The derivation : Consider a wave in 1D

ψ(x, t) = A cos
(2πx
λ
− 2πνt

)
Denote k = 2π

λ
(wave number) , ω = 2πν (angular frequency)

ψ(x, t) = A cos
(
kx− ωt

)
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This is a wave moving to the right with a phase velocity v = ω/k and group velocity
vg = dω/dk. In general, we could have written

ψ(r⃗, t) = A cos
(
k⃗ · r⃗ − ωt

)
+B sin

(
k⃗ · r⃗ − ωt

)
,

or even

ψ(r⃗, t) = C exp
{
i(k⃗ · r⃗ − ωt)

}
, C ∈ C

A quick recap on phase and group velocities. The phase velocity v is the velocity of propa-
gation of points of constant phase ϕ = kx− ωt for a single harmonic component of the full
wavefunction ψ, i.e., stationarity of phase ϕ with respect to time t

dϕ

dt
= k

dx

dt
− ω = 0→ dx

dt
≡ v =

ω

k
. (3.3)

On the other hand, in the neighbourhood of a point within a wavepacket, the phase ϕ =
kx − ωt is stationary with respect to the wavevector k, i.e., various k components of the
wavepacket stand in constant phase relative to one another. Then, the group velocity (vg)
given by

dϕ

dk
= x− dω

dk
t = 0→ x

t
≡ vg =

dω

dk
, (3.4)

and defines the motion of all such points that are in constant relative phase to one another.

Applying the properties of e-m waves to matter-waves, we already know that

(i) E = hν = ℏω (Planck)

(ii) p =
h

λ
= ℏk (de Broglie) ,

where ℏ = h/2π. For a non-relativistic particle with mass m: E = p2

2m
.

Now, we can check that acting the following derivative on ψ

iℏ
∂ψ(r⃗, t)

∂t
= iℏ(−iω)C exp

{
i(k⃗ · r⃗ − ωt)

}
= Eψ(r⃗, t)

Note: in the language of linear algebra, we say that ψ is the eigenfunction of the linear
operator iℏ∂ψ(r⃗,t)

∂t
with eigenvalue E.

Now, for k⃗ · r⃗ = kxx+kyy+kzz, we can also see that ψ(r⃗, t) is the eigenfunction of the linear
operator −iℏ ∂

∂x
with eigenvalue ℏkx

−iℏ∂ψ(r⃗, t)
∂x

= −iℏ(ikx)C exp
{
i(k⃗ · r⃗ − ωt)

}
= ℏkxψ(r⃗, t) .
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Similarly, −iℏ ∂
∂y

and −iℏ ∂
∂z

give eigenvalues ℏky and ℏkz respectively.

∴ −iℏ∇⃗ψ(r⃗, t) = −iℏ
(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
ψ(r⃗, t) (3.5)

= ℏ
(
x̂kx + ŷkx + ẑkz

)
ψ(r⃗, t) (3.6)

= ℏk⃗ψ(r⃗, t) (3.7)

⇒ −iℏ∇⃗ψ = p⃗ψ (3.8)

and

(−iℏ∇⃗ψ) · (−iℏ∇⃗ψ) = p⃗ · p⃗ ψ (3.9)

⇒ −ℏ2∇⃗2ψ = |p⃗|2ψ = p2ψ . (3.10)

This gives us

−ℏ2

2m
∇2ψ =

p2

2m
ψ , (3.11)

iℏ
∂ψ(r⃗, t)

∂t
= Eψ . (3.12)

Since E = p2

2m
, it is entirely plausible that

−ℏ2

2m
∇2ψ = iℏ

∂ψ(r⃗, t)

∂t

Now assume that, in the presence of a spatially dependent potential energy V (r⃗), the exten-
sion to the above relation is

Ĥψ ≡ − ℏ2

2m
∇2ψ + V (r⃗)ψ = iℏ

∂ψ(r⃗, t)

∂t
,

where we have defined the Hamiltonian operator

Hamilton

Ĥ ≡ − ℏ2

2m
∇2 + V (r⃗) = iℏ

∂

∂t
. (3.13)

Clearly, for V (r⃗) ̸= 0, the solution ψ ≃ exp
{
i(k⃗r⃗ − ωt)

}
is not guaranteed to work (though

it worked very well for V = 0).

Postulate: The above equation gives the correct ψ(r⃗, t) for any potential V (r⃗).

This has been checked and verified rigorously in many cases for the past century! Thus,
we can say with some comfort that the postulate holds, and that the Schrödinger equation
correctly describes the dynamics of matter waves in various situations (i.e.. described by
different V (r⃗)).
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3.2 Physical Meaning of Ψ

Born

Ψ(r⃗, t) is a complex quantity in Quantum Mechanics, and thus it cannot represent a physi-
cally measurable quantity. Born argued that the probability density is, however, measurable:

|ψ|2 = ψ∗ψ . (3.14)

Now, just as ψ is a solution of the SE, so is cψ (where c is an arbitrary complex number).In
this sense, the value of the complex number c cannot be determined from just the SE. Instead,
we need an additional requirement called the “Normalisation Condition” on the probability
density to determine c ∫

all space

d3x ψ∗ψ = 1 . (3.15)

As an example, consider the case of a particle in an infinite square well of extent a, with

Figure 3.2: Wavefunctions (Left) and Energy Spectrum (Right) for the lowest three eigen-
states of the particle in a box problem.

the ground state wavefunction given by

ψ = A sin

(
πx

a

)
exp

{
−iℏπ2

2ma2
t

}
0 ≤ x ≤ a

= 0 for x < 0 and x > a (3.16)

From the normalisation condition

∫ a

0

dx|A|2 sin
(
πx

a

)2

= 1

|A|2a
2
= 1 =⇒ A =

√
2

a

=⇒ ψ =

√
2

a
sin

(
πx

a

)
e

−iℏπ2

2ma2
t
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We could have chosen A = −
√

2
a
or even A = exp{iϕ}

√
2
a
where the phase ϕ is arbitrary.

This choice doesn’t matter, as all observables depend on the probability density (∝ |A|2)
and not on the probability amplitude.

Convention: We usually take A to be real and positive.

3.3 Observables, Operators and Expectation values

For a particle in state ψ, the expectation value of the position operator x̂ is defined as〈
x̂
〉
=

∫ ∞

−∞
dx ψ∗x̂ψ =

∫ ∞

−∞
dx x× |ψ(x)|2

Note: It is worth stressing that the quantity
〈
x̂
〉
is the average (or mean) position obtained

from measurements made from an entire ensemble of systems, all prepared in the state ψ.
It is not the average obtained by taking repeated measurements on any one system.

Similarly, we have already seen linear operators for momentum and energy p̂x = −iℏ ∂
∂x
, E =

iℏ ∂
∂t
, such that we can write the expectation value for p̂x as

〈
p̂x
〉
=

∫ ∞

−∞
dx ψ∗(x, t)(−iℏ ∂

∂x
)ψ(x, t) .

These are all physically measurable quantities and are called observables. Very generally,
in quantum mechanics,

OBSERVABLES are associated with LINEAR OPERATORS .

For any linear operator θ̂, its expectation value is

⟨θ̂⟩ =
∫
v

dr⃗ψ∗(r⃗, t)θ̂ψ(r⃗, t) (3.17)

Note: One obtains definite results for the action of a linear operator on a state only if it is
an eigenstate of that operator, i.e.,

θ̂ψ = θψ

In this case, it is easy to see that

⟨θ̂⟩ =

∫
v

dr⃗ψ∗(r⃗, t)θ̂ψ(r⃗, t)

= θ

∫
v

ψ∗(r⃗, t)ψ(r⃗, t)

= θ (as

∫
v

ψ∗(r⃗, t)ψ(r⃗, t) = 1) . (3.18)
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Conversely, if ψ is not an eigenstate of θ̂, acting with θ̂ on ψ will not give a value which will
always be the same for repeated measurements on an ensemble with state ψ, i.e., we cannot
predict the outcome of measuring θ on ψ with complete certainty. Instead, in such cases,
the expectation value θ is always a well-defined quantity.

Ehrenfest

In fact, these expectation values obey classical laws. For instance,

〈
v̂
〉
=
d
〈
x̂
〉

dt
,

〈
p̂x
〉
= m

〈
v̂
〉
= m

d
〈
x̂
〉

dt
,

d
〈
p̂x
〉

dt
=

〈
− dV̂

dx

〉
.

These classical relations are examples of Ehrenfest’s theorem, and are an expression of
the correspondence principle for matter waves. Lets see how the third identity can be arrived
at.

d
〈
p̂x
〉

dt
=

∫
dx
(∂ψ∗

∂t

)
p̂xψ +

∫
dxψ∗∂p̂x

∂t
ψ +

∫
dxψ∗p̂x

∂ψ

∂t

=
−1
iℏ

∫
dx(Ĥψ)∗p̂xψ +

〈
∂p̂x
∂t

〉
+

1

iℏ

∫
dxψ∗p̂x(Ĥψ) (using S.E: Ĥψ = iℏ

∂ψ

∂t
)

=

〈
∂p̂x
∂t

〉
+

1

iℏ

∫
dxψ∗

(
p̂xĤ − Ĥ∗p̂x

)
ψ

=
1

iℏ

∫
dxψ∗

(
p̂xĤ − Ĥp̂x

)
ψ (as

〈
∂p̂x
∂t

〉
= 0 , Ĥ∗ = Ĥ , (Ĥψ)∗ = ψ∗Ĥ∗)

=
1

iℏ

∫
dxψ∗

(
p̂xV̂ − V̂ p̂x

)
ψ (as the kinetic energy part vanishes)

=
1

iℏ
×−iℏ

∫
dxψ∗

(∂V̂
∂x

)
ψ (using the chain rule)

=

〈
− dV̂

dx

〉
. (3.19)

Note that the 4th line above involves the commutator of the two operators p̂x and Ĥ, i.e.,

p̂xĤ − Ĥp̂x ≡ [p̂x, Ĥ]

= − ℏ2

2m
[p̂x, p̂

2
x] + [p̂x, V̂ (r⃗)]

= [p̂x, V̂ (r⃗)] , (3.20)

where we have used the fact that [p̂x, p̂
2
x] = 0 , i.e., the kinetic energy term commutes with

p̂x. The commutator for two linear operators θ̂1 and θ̂2 is defined as

[θ̂1, θ̂2] = θ̂1θ̂2 − θ̂2θ̂1 . (3.21)
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The fact that [p̂x, p̂
2
x] = 0 can be easily established by taking p̂x = −iℏ∂/∂x and evaluating

[p̂x, p̂
2
x]f(x) where f(x) is some smooth, differentiable function of x. Also, note that Ĥ∗ = Ĥ

relates to the Hermitian nature of the linear operator Ĥ, i.e., it must have a real eigenvalue.
Further, (Ĥψ)∗ = ψ∗Ĥ∗ is the Hermitian adjoint of Ĥψ. We will see these relations in more
detail in a later lecture.

The above Ehrenfest relation is nothing but an expression of Newton’s second law for matter waves!

I leave it to you to prove some of the other examples of Eherenfest’s theorem as an exercise.
Also, we have only been considering the expectation value (or “mean”) of experimentally
measurable quantities (observables) thus far. What about the fact that the such quantities
will also have a variance (and therefore standard deviation), skew, kurtosis etc.? We will
turn to this next.

Figure 3.3: First four moments of a distribution. Source: The Internet.
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Chapter 4

Heisenberg’s Uncertainty principle

Heisenberg

4.1 The case of a wavepacket

In quantum mechanics, a particle is described by a wave packet (which itself is composed of
many different waves!). The wave packet surrounds the expectation value of the position,
and its “centre of gravity” moves with the group velocity along the classical trajectory. As
we will see, such a wave packet has an intrinsic indeterminacy in its position and momentum.

Consider the wave packet through the Fourier integral at t = 0

ψ(x, t = 0) =
1√
2πℏ

∫ ∞

−infty
dp a(p) e

ipx
ℏ where a(p) =

1√
2πℏ

∫ ∞

−infty
dxψ(x)e

−ipx
ℏ

Using this relation, we can construct a wave packet localised within a region of width ∆x
and height 1√

∆x
, i.e., is a rectangular waveform ψ(x) that is nonzero within a region of width

∆x, and zero everywhere else.

The Fourier coefficient for this waveform is ( for p = ℏk)

a(p) =

√
∆x

2πℏ
sin p∆x

2ℏ
p∆x
2ℏ

and a(p)2 ∝ Probability that the particle has momentum p. Plotting a(p) as a function of
p shows maximum at p = 0, and the maximum contribution to the middle part comes from
the narrow interval around the origin with a width

∆p ≡ ℏ
∆x

⇒ ∆p∆x ≡ ℏ and this is irrespective of the shape of the wavepacket
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Figure 4.1: The square wavepacket and its Fourier transform (the sinc function, also known
as the “Fraunhofer diffraction pattern”). Source: The internet.

It is not possible to build into the wavepacket more exact information on both the posi-
tion and the momentum of the particle. This reflects the intrinsic indeterminacy of the
wavepacket in terms of conjugate variables like (x,p) etc. This is the content of the Heisen-
berg uncertainty principle (HUP).

4.2 The γ-ray microscope gedanken

Figure 4.2: The γ-ray microscope gedanken. See text for discussion. Source: R. Shankar’s
text “Principles of Quantum Mechanics”.

The Heisenberg Uncertainty Principle (HUP) sets a limit to the precision with which certain
pairs of conjugate dynamical variables (e.g., linear position x and linear momentum px,
angular momentum L and angular position θ etc.) can be defined simultaneously. There is
no theoretical limit on the accuracy with which a single variable related to the wavepacket
can be defined. The statement is that increasing the accuracy in the definition of a given
variable makes manifest a decreasing accuracy in the definition of a variable conjugate to it,
such that the uncertainty relation written in terms of both holds. It is important to note
that measurements make the intrinsic uncertainty manifest, but do not define
them.
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A gedanken that highlights the intrinsic uncertainty in conjugate quantities is the γ-ray
microscope. Here, light of wavelength λ shines on (i.e., scatters off) an electron (e− in
Fig.4.2 above) and then enters the objective lens (O) of a microscope (M) such that it
finally reaches our eye (E). The aperture width of the lens is a, and the electron is placed at
the focal distance f such that the gathering angle its position makes with respect to the lens
is 2δθ (i.e., the angle of the cone of light that enters O after scattering off the e−). Ensure
that the beam of electrons contains monoenergetic e−s, such that we know the e−-momentum
precisely (p =

√
2mE) before its interaction with the light. According to the HUP, we can

say nothing about the position related to the matter waves associated with such e−s. Can
we use a microscope to obtain some information on their position?

Since the classical resolving power of a microscope is inversely proportional to the wavelength
(λ) of light used, why not try very short-wavelength λ, i.e., γ-rays? From physical optics,
the accuracy of such a measurement is

∆x =
λ

sin δθ
≃ λf

a
. (4.1)

Now recall that quantum mechanically, the light being used is a flux of photons with momen-
tum p = h/λ. Indeed, for us to be able to observe an e− in M , a photon must be scattered
such that the x-component of its momentum must lie in a range

0 ≤ px ≤ p sin δθ ≃ ha

λf
⇒ ∆px ≃

ha

λf
. (4.2)

Thus, we can see that the product of ∆x and ∆px gives

∆x ·∆px ≃ h , (4.3)

offering the HUP. This relation tells us that if we “soften the blow” imparted to the e− by
the photon by increasing λ or decreasing a (i.e., narrowing the objective lens width) such
that ∆px → 0, we lose out on the resolution of the position of the e−. Indeed, there is no
way around the HUP: more elaborate schemes that attempt to take into account the recoil
of the photon turn out to be equally futile. The appearance of the Planck constant h instead
is telling us that the source of the HUP is intrinsic to the quantum world. Wave-particle
duality is only another manifestation of this.

The only way out of this is to make measurement of macroscopic (i.e., classical) objects: for
them, measurements typically have h→ 0 such that we can simultaneously have both ∆x→
0 as well as ∆px → 0. In this way, we can justify how the arbitrary precision of Newtonian
mechanics emerges from the Heisenberg uncertainty principle quantum mechanics. Note,
though, that taking the limit of h → 0 is a heuristic tool ... we don’t really understand at
present how this emergence takes place!

4.3 A derivation of the HUP for wavepackets

Definition of Uncertainty in expectation value of an operator θ̂ is

∆θ =
√〈

(θ −
〈
θ
〉
)2
〉
akin to the standard deviation in statistics
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Now, 〈
x
〉
=

∫ ∞

−∞
dx ψ∗xψ =

∫ ∞

−∞
dx x|ψ(x)|2

〈
p̂x
〉
=

∫ ∞

−∞
dx ψ∗(x, t)

(
− iℏ ∂

∂x

)
ψ(x, t) .

Note that we are dropping theˆ (hat) symbol above all operators for the sake of brevity; we
assume henceforth that the reader will understand their presence from the context. In order
to reach the HUP, let us start with∫

dx iℏ
dψ∗

dx
xψ = −iℏ

∫
dx ψ∗ψ − iℏ

∫
dx
dψ

dx
xψ∗ (where ψ∗xψ|∞−∞ → 0 as ψ, ψ∗|∞−∞ → 0)

= −iℏ
∫

dx ψ∗ψ +
[
iℏ
∫

dx
dψ∗

dx
xψ
]∗

(as x∗ = x) . (4.4)

Since c− c∗ = 2iIm[c] , c ∈ C, we can rewrite the above as

iℏ
∫
dx|ψ|2 = 2iIm

[ ∫
iℏdx

dψ∗

dx
xψ
]

(4.5)

∴ ℏ2
∣∣∣∣∫ dx|ψ|2

∣∣∣∣2 = 4

∣∣∣∣Im∫ dx iℏ
dψ∗

dx
xψ

∣∣∣∣2 ≤ 4

∣∣∣∣iℏ∫ dx
dψ∗

dx
xψ

∣∣∣∣2 , (4.6)

where in the second line, we have used the relation |Im[c]|2 ≤ |c|2 , c ∈ C. Now, using the
Schwarz inequality |c∗1c2|2 ≤ |c1|2 × |c2|2 , we obtain∣∣∣∣∫ dx iℏ

dψ∗

dx
xψ

∣∣∣∣2 ≤ ∫
dx xψ∗xψ

∫
dx
(
iℏ
∂ψ∗

∂x

)(
− iℏ∂ψ

∂x

)
∣∣∣∣∫ dx iℏ

dψ∗

dx
xψ

∣∣∣∣2 ≤ ∫
dx x2|ψ|2

∫
dx

∣∣∣∣−iℏ∂ψ∂x
∣∣∣∣2 . (4.7)

Thus, the inequality relation eq.(4.6) becomes

ℏ2

4

∣∣∣∣∫ dx |ψ|2
∣∣∣∣︸ ︷︷ ︸

=1

≤
∫

dx x2|ψ|2︸ ︷︷ ︸
⟨x2⟩

×
∫

dx
(
iℏ
∂ψ∗

∂x

)(
− iℏ∂ψ

∂x

)
︸ ︷︷ ︸

⟨p2⟩

⇒ ℏ2

4
≤

〈
x2
〉〈
p2
〉
. (4.8)

Recall that the relations for the standard deviations in x and p are

∆x =
√〈

(x−
〈
x
〉
)2
〉
, ∆p =

√〈
(p−

〈
p
〉
)2
〉
, (4.9)

we replace x and p by their generalisations x −
〈
x
〉
and p −

〈
p
〉
respectively in eq.(4.8) to

obtain

ℏ2

4
≤

〈
(x−

〈
x
〉
)2
〉〈
(p−

〈
p
〉
)2
〉
≡
(
∆x
)2(

∆p
)2

(4.10)

⇒ ℏ
2
≤ ∆x∆p . (4.11)

48



This is the celebrated form of the Heisenberg Uncertainty Principle (HUP) relation between
x and p. It shows clearly the existence of a lower bound on the precisions that can be ob-
tained on simultaneous measurement of x and its conjugate momentum p.

Note: As we have said earlier, there are several other examples of similar uncertainty rela-
tions in quantum mechanics, e.g., angular momentum and angular position etc. One such
is that between energy E of a system E and time t: ∆E∆t ≥ ℏ/2. This relation cannot be
derived from the above approach as t is not a dynamical variable like x and p; rather, t is a
parameter in quantum mechanics. Thus, the content of this uncertainty relation is different
from those that involve only dynamical variables. The uncertainty relation for E and t has
the following (rough) meaning:

The energy E of a system that has only been in existence for a time (i.e., its “lifetime”)
∆t has an uncertainty (or spread about its mean value) of atleast ∆E, such that the above
quoted relation is satisfied. Clearly, for a stationary energy eigenstate, ∆E = 0, and its
lifetime ∆t→∞. On the other hand, a state with a finite lifetime will undergo decay; such
states have a finite and non-zero ∆E. The origin of this relation will be revealed in further
courses up ahead. For now, suffice it to say that there are several contexts in which such
decay processes can show up, two being:

(a) an open quantum system, i.e., a quantum system connected to its environment. Here, if
the system is prepared in one (or a superposition) of the eigenstates of the isolated system,
it will “decay” into the true eigenstates of the coupled system, and

(b) an interacting quantum system, i.e., a system with inter-constituent interactions. In
such a many-body problem, if the system is prepared in one (or a superposition) of the
eigenstates of the non-interacting system, it will “decay” into the true eigenstates of the full
interacting system.

Note that in both cases, the true eigenstates are very difficult to learn in general. Most
of our theories for such complex quantum systems typically work with those that are almost
isolated and weakly interacting.
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Chapter 5

The Time Dependent and
Independent Schrödinger Equations
(TDSE & TISE)

Schrödinger

The Schrödinger equation in its most general form is

ĤΨ(r⃗, t) ≡ −ℏ
2

2m
∇2Ψ(r⃗, t) + V (r⃗, t)Ψ(r⃗, t) = iℏ

∂Ψ

∂t
,

where the various cases we are interested in studying are characterized by different functional
forms of V (r⃗, t) . This is the time dependent Schrödinger equation (TDSE).

For a special case of potentials V (r⃗) (i.e., no explicit time dependence in the potential),
we have

ĤΨ(r⃗, t) =
[−ℏ2
2m
∇2 + V (r⃗)

]
Ψ(r⃗, t) = iℏ

∂Ψ(r⃗, t)

∂t

Several cases of such potentials will be encountered in the days ahead. Concrete examples
include the potential felt by an electron in an atom or in a crystal lattice.
We require that Ψ(r⃗, t) be an eigenfunction of the energy operator iℏ ∂

∂t
with energy eigenvalue

E

iℏ
∂Ψ(r⃗, t)

∂t
= EΨ(r⃗, t) ,

such that

ĤΨ(r⃗, t) =
[−ℏ2
2m
∇2 + V (r⃗)

]
Ψ(r⃗, t) = EΨ(r⃗, t) .

This is called the time independent Schrödinger equation (TISE). We can solve the equation
above using separation of variables

Ψ(r⃗, t) = ψ(r⃗)χ(t) ,
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such that

iℏψ(r⃗)
∂χ(t)

∂t
= Eψ(r⃗)χ(t) (5.1)

=⇒ ˙χ(t) =
−iE
ℏ

χ(t) , (5.2)

χ(t) = e
−iEt

ℏ , (5.3)

choosing χ(t = 0) = 1 as our normalisation choice.
Similarly, [−ℏ2

2m
∇2 + V (r⃗)

]
ψ(r⃗)χ(t) = Eψ(r⃗)χ(t)

or,
[−ℏ2
2m
∇2 + V (r⃗)

]
ψ(r⃗) = Eψ(r⃗) (5.4)

(5.5)

such that
Ψ(r⃗, t) = ψ(r⃗)e

−iEt
ℏ (5.6)

is the full wavefunction. We can also define a time evolution operator U = e−
iĤt
ℏ , such that

UΨ(r⃗, t) = e−
iĤt
ℏ Ψ(r⃗, t)

= e−
iEt
ℏ Ψ(r⃗, t) , (5.7)

where E is the eigenvalue of the Hamiltonian Ĥ for the state Ψ(r⃗, t). We will see later that
the Hamiltonian corresponds to a Hermitian operator with real-valued eigenvalues E ∈ R.
In such cases, the unitary time evolution operator U = e−

iĤt
ℏ (i.e., the exponentiation of

a Hermitian operator) corresponds to a Unitary operator, whose eigenvalue is simply the

phase factor χ(t) = e
−iEt

ℏ .

Further, it is easily seen that

Probability Density : Ψ∗(r⃗, t)Ψ(r⃗, t) = ψ∗(r⃗)e
iEt
ℏ ψ(r⃗)e

−iEt
ℏ = ψ∗(r⃗)ψ(r⃗) and (5.8)

Expectation Value :
〈
θ̂
〉

=

∫
v

dr⃗ψ∗(r⃗)e
iEt
ℏ θ̂ψ(r⃗)e

−iEt
ℏ

=

∫
v

dr⃗ψ∗(r⃗)θ̂ψ(r⃗) . (5.9)

From these two relations for the Probability density and the Expectation value, we learn that
the phase accrued from time evolution χ(t) = e

−iEt
ℏ does not change the total probability (or

“norm”) associated with the state Ψ(r⃗) in time. We denote such a probability preserving
time evolution as “unitary”.

As mentioned earlier, the time independent Schrödinger equation (TISE, eq.(5.5)) also helps
us define the Hamiltonian operator

Ĥ =
−ℏ2

2m
∇2 + V (r⃗) whose eigenvalue is E , (5.10)

Ĥψ(r⃗) = Eψ(r⃗) . (5.11)
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Further, time evolution of a system is neatly encoded by the (energy) eigenstates of the
Hamiltonian operator. This makes them special.

Degenerate Eigenstates: Also, note that if

iℏ
∂Ψ1

∂t
= EΨ1 , Ψ1 = ψ1(r⃗)χ1(t) & iℏ

∂Ψ2

∂t
= EΨ2 , Ψ2 = ψ2(r⃗)χ2(t) , (5.12)

i.e., Ĥψ1 = Eψ1 , Ĥψ2 = Eψ2 , (5.13)

then

Ĥ
(
c1ψ1 + c2ψ2

)
= Ec1ψ1 + Ec2ψ2 (c1, c2 ∈ C) ,

= E
(
c1ψ1 + c2ψ2

)
, (5.14)

i.e., c1ψ1 + c2ψ2 is also an eigenfunction of Ĥ with the same energy eigenvalue E. In this
case, the wavefunctions ψ1 and ψ2 are said to be degenerate with respect to one other.

5.1 Qualitative Solutions and the origin of Quantisa-

tion

We will now try to reach some qualitative conclusions on how “proper” wavefunctions ψ
should look:

1. As x → ±∞, ψ(x) → 0; else, ψ is not normalisable (or square integrable). This is
especially important in distinguishing the physically sensible wavefunctions in parts of
the potential V (x) that are classically forbidden.

2. The wavefunction ψ cannot be discontinuous. Physically, this makes no sense, as we
would need extra information with which to make sense of missing probabilities |ψ|2.

3. The spatial derivative dψ
dx

is continuous for all x, unless the potential V (x) is very
peculiar (such that ψ(x) has kinks). Can you think of such a peculiar V (x)?

For a wavefunction ψ(x) that satisfies all these three conditions, the particle can exist classi-
cally in regions of x where the potential V (x) < E, while it is classically forbidden in regions
where E < V (x). In the classical world, a particle is bound to regions where V (x) < E.
However, in the quantum world, perfectly legal ψ(x) can be found for both V (x) < E as well
as E < V (x). We will encounter this with bound states (e.g., in the simple harmonic oscil-
lator problem) as well as with scattering (i.e., spatiall extended) states (e.g., in the barrier
tunneling problem).

The origin of the phenomenon of quantisation (or discretisation of the energy spectrum/
allowed values of the eigenvalues E) lies in the fact that for states that are classically bound,
the TISE has solutions ψ that satisfy all of the three criteria above only at certain discrete
values of E. For instance, for a particle inside the infinitely deep well, it is easily seen
that the simplest plausible ψ(x) that satisfies curvature function − ℏ2

2m
∇⃗2 as well as all three
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Figure 5.1: Wavefunctions (Left) and Energy Spectrum (Right) for the lowest three eigen-
states of the particle in a box problem.

criteria given above is the one that characterises the ground state ψn=0: it has the minimum
curvature (and thence the minimum kinetic energy) and vanishes at the walls of the potential
(as V →∞ there). Tuning the energy E continuously does not reveal another solution ψn=1

vanishingly close by in energy to ψn=0. However, one finds other solutions at particular
discrete values. Clearly, these will all have greater kinetic energy than the ground state,
simply as they have greater curvature − ℏ2

2m
∇⃗2.

Indeed, the next simplest and plausible ψ, ψn=1 is one that changes the curvature d2ψ(x)
dx2

qualitatively in comparison to that for ψn=0: ψn=1 crosses the x-axis once and is called the
first excited state. A general result for excited bound states is that the nth excited state
(n ∈ Z) crosses the x-axis n times. Thus, the discrete bound states ψn have an energy
En arising from an ever-increasing curvature due to n crossings of the x-axis. Also, if the
potential V (x) has a centre of symmetry, the eigenstates will be alternating even parity
(ψ(−x) = ψ(x)) and odd parity (ψ(−x) = −ψ(x)) functions about that centre of symmetry.

For cases where E > V (x) for all x, only unbound (or “scattering”) states exist. These
states do not have a tendency to diverge at x→ ±∞ (though you have to be a little careful

in showing that!) and their curvature d2ψ(x)
dx2

can vary continuously as E is varied. Thus,
these unbound states form a continuous (rather than discrete) spectrum. For instance, the
free particle with energy E = p2/2m , p ∈ R and V (x) = 0 (or any constant with respect
to which the kinetic energy can be defined) is a case of such a system with unbound states
forming a continuous spectrum.
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Figure 5.2: (Left) Wavefunctions for the lowest three eigenstates of the particle in a box
problem. (Right) Barrier Tunneling problem with a Dirac-Delta Function Potential. Source:
The internet.
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Chapter 6

Formalism I : Operators,
Eigenfunctions and Eigenvalues

6.1 Operators, Eigenfunctions and Eigenvalues

6.1.1 Definition of an operator

Recall that a Function is simply a rule for taking a number and changing it to another
number, e.g., f(x) = x2.

An operator is a rule for changing one function into another

D[f(x)] ≡ df(x)

dx

D[3x2] = 6x

D[cosx] = − sinx

We are interested in a special class of operators called linear operators (L) such that:

(i) L[f(x) + g(x)] = L[f(x)] + L[g(x)] (6.1)

(ii) L[cf(x)] = cL[f(x)] , c ∈ R or c ∈ C . (6.2)

Note that the differential operator D satisfies the criteria for being a Linear Operator

D[f(x) + g(x)] = D[f(x)] +D[g(x)]

D[cf(x)] = cD[f(x)] ,
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but the operator A[f(x) + g(x)] = [f(x) + g(x)]n does not

A[f(x) + g(x)] = [f(x) + g(x)]n ̸= f(x)n + g(x)n for n > 1 .

6.1.2 Eigenfunctions and Eigenvalues

For a linear operator L and a function f(x) such that

L[f(x)] = cf(x) , c ∈ R or c ∈ C ,
we call f(x) an eigenfunction of L with eigenvalue c. The function f(x) and the eigenvalue c
will clearly depend on the form of the operator L. For instance, for the case of the differential
operator D, we have for

D[f(x)] = cf(x)⇒ f(x) = A exp{cx}
is the general solution, where A is arbitrary constant. On the other hand, functions like lnx,
xn and sin x are not eigenfunctions of the linear operator D.

In Quantum Mechanics, we postulate that linear operators associated with all observables
(i.e., experimentally measurable quantities) have real eigenvalues. Such operators
are called Hermitian

L[f(x)] = cf(x) , c ∈ R and (6.3)〈
L
〉

=
〈
L†〉 ∈ R , (6.4)

where the † operation is defined as〈
A
〉

=

∫ ∞

−∞
dx ψ∗Aψ ,

〈
A†〉 = ∫ ∞

−∞
dx ψ∗A†ψ

∴
〈
A
〉

=
〈
A†〉

⇒
〈
A
〉
=

∫ ∞

−∞
dx ψ∗Aψ =

∫ ∞

−∞
dx (Aψ)∗︸ ︷︷ ︸

=ψ∗A†

ψ =
〈
A†〉 .

In the matrix formulation of quantum mechanics, the operator A is a N × N matrix, the
state vector (wavefunction) ψ is a 1×N column vector and the state vector (wavefunction)
ψ∗ is a N × 1 row vector, such that

⟨A⟩ =
∫
V

d3r (ψ1ψ2 . . . ψN)
∗


A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...
AN1 AN2 . . . ANN



ψ1

ψ2
...
ψN

 . (6.5)

Then, it becomes clear that the † (i.e., Hermitian conjugation) operation involves taking
both the complex conjugation as well as a transpose operation (i.e., such that A can be
transferred from its action on a column vector to a row vector). Recall that the complex
conjugation for the matrix must be done for every one of its elements.

For the special case of the row and column vector becoming a single state, say ψ∗
n and ψN

respectively, and the operator A becoming a single element, say ANN , there is now no longer
any need to take the transpose action.
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6.1.3 Commutators

As two linear operator Â and B̂ are not generally commutative under multiplication

ÂB̂ − B̂Â ̸= 0

[Â, B̂] = ÂB̂ − B̂Â ̸= 0 .

Why does this matter? For the case that [Â, B̂] = 0,

(i) Âψ = aψ , (6.6)

(ii) B̂ψ = bψ . (6.7)

Now from (i)
B̂(Âψ) = B̂aψ = aB̂ψ . (6.8)

But since ÂB̂ = B̂Â, we can write the above as

B̂(Âψ) = Â(B̂ψ) = a(B̂ψ) , (6.9)

i.e., B̂ψ is also an eigenfunction of Â with eigenvalue a. This indicates that B̂ψ must satisfy
the eigenvalue equation: B̂ψ = bψ.
Note: For [Â, B̂] = 0, we see that the state ψ is an eigenstate of both Â and B̂, and we can

simultaneously measure eigenvalues for both observables related to Â and B̂.

On the other hand, for [Â, B̂] ̸= 0, it is clear that the operators Â and B̂ do not share the
same eigenbasis, and we cannot simultaneously measure well-defined eigenvalues for both.
For instance, consider the example of the conjugate observables p̂ ≡ −iℏ d

dx
and x̂ ≡ x (the

spatial variable defined on R) acting on wavefunctions defined on a wavefunction chosen to
be in the x-representation, ψ(x):

[p̂, x̂]ψ(x) = (−iℏ d
dx

)(xψ(x))− x(−iℏ d
dx

)ψ(x)

= −iℏx(dψ(x)
dx

)− iℏψ + iℏx(
dψ(x)

dx
)

= −iℏψ
⇒ [p̂, x̂] = −iℏ (dropping the ψ from both sides) , (6.10)

i.e., confirming the fact p̂ and x̂ do not commute with one another. Note that you could
have chosen to carry out this calculation with p̂ ≡ p (the momentum variable defined on R),
x̂ ≡ iℏ d

dp
and wavefunctions in the p-representation, ψ(p). You will again obtain precisely

the same result (check this for yourself!). This shows the representation independence of the
relation [p̂, x̂] = −iℏ.

This relation tells us that p̂ and x̂ do not share the same eigenbasis, and we cannot simulta-
neously measure well-defined eigenvalues for both p̂ and x̂. This is basically a restatement of
the Heisenberg uncertainty relation for p̂ and x̂. Further, the appearance of the iℏ is actually
signalling the wave-particle duality at the heart of quantum mechanics (we are playing with
matter waves after all!). As you will learn in advanced courses up ahead, the iℏ factor is
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also an indication of the fact that the quantum state (or Hilbert) space can be seen as the
quantisation of the associated phase space for an equivalent classical mechanical system in
terms of sub-blocks of side-length ℏ. If you don’t know what I mean at this point, don’t
worry about it!

Further, the above commutator relation between conjugate operators such as p̂ and x̂ is
itself a special case of a more generalised relation: [Ô1, Ô2] ∝ Ô3, i.e., the commutation
relation between two operators will typically lead to a third operator. We will encounter
an example of this when we study the orbital angular momentum problem (in terms of the
various components (Lx, Ly, Lz) of the orbital angular momentum operator).

Finally, a note on symmetries. the fact that an operator θ̂ commutes with the Hamilto-
nian operator Ĥ, [Ĥ, θ̂] = 0, implies that the corresponding physical observable satisfies a
conservation law (i.e., an invariance in time) and reflects on a corresponding symmetry of
the quantum system. Further, this symmetry (and its corresponding conservation law) will
be preserved in time. This can be seen simply from the fact that since the unitary time

evolution operator is given by U = e−
iĤt
ℏ (i.e., U is a function of the Hamiltonian Ĥ),

[Ĥ, θ̂] = 0 =⇒ [U, θ̂] = 0 . (6.11)

Let us consider a couple of simple examples to clarify these point.

(a) For a free particle on the 1D line, Ĥ = p̂2/2m and [Ĥ, p̂] = 0, implying that the linear
momentum p̂ is conserved in time and its eigenvalue is a “good” quantum number. This
reflects on the fact that Ĥ and p̂ have the same basis, and that there is a continuous
translation symmetry in the problem, such that for the eigenfunction ψ(x) = N e−ip̂x
(and where N is the normalisation factor), we have

Tδxψ(x) = e−ip̂δx/ℏψ(x) = ψ(x+ δx) , (6.12)

where Tδx = e−ip̂δx/ℏ is the operator for a translation in real space along the 1D line by
an amount δx. Thus, the linear momentum p̂ is the generator of infinitesmal translation
δx.

(b) For a quantum system in which the (say, 1D) potential has inversion symmetry V (x̂) =
V (−x̂), the parity operation P̂ is such that its action on any eigenfunction ψ gives

P̂ψ0(x) = ±ψ0(−x)
This arises from the fact that P̂ 2ψ0(x) = ψ0(x)

⇒ ψ0(−x) = ±ψ0(x) , (6.13)

i.e., eigenvalues of P̂ are ±1, such that all eigenstates have either even (+1) or odd (-1)
parity eigenvalue. For such a parity symmetric system, [Ĥ, P̂ ] = 0 . Consider the case
of the wavefunctions of the particle in a box problem shown below. Can you think of
any other well known potential in 1D that possesses parity symmetry?
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Figure 6.1: Wavefunctions for the lowest three eigenstates of the particle in a box problem.
Source: The internet.

6.2 Important properties of Eigenstates

(1) Eigenvalues of Hermitian Operators are real-valued.
Recall that this is important because Hermitian operators are associated with physical ob-
servables/ experimentally measurable quantities. Take a Hermitian Operator Â such that
Â = Â† = (Â∗)T , where ∗ and T refer, as discussed earlier, to complex conjugation and
transpose operations respectively. Let

Âψn = anψn , n = 1, 2, 3, . . . (6.14)

Now, by computing the expectation value

⟨Â⟩ =

∫ −∞

∞
dx ψ∗

nÂψn =

∫ −∞

∞
dx (Âψn)

∗︸ ︷︷ ︸
=ψ∗

nÂ
†

ψn

=

∫ ∞

−∞
dx ψ∗

nanψn =

∫ ∞

−∞
dx(anψn)

∗ψn

= an

∫ ∞

−∞
dx ψ∗

nψn = a∗n

∫ ∞

−∞
dx ψ∗

nψn

⟨Â⟩ = an = a∗n
or, aN ∈ R (QED) (6.15)

(2) Different eigenstates of the same potential are orthogonal.
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Note that the Inner Product is defined as∫ ∞

−∞
dx ψ∗

nψm = δn,m =

{
1, n = m

0, otherwise
(6.16)

For a Hermitian operator Â with eigenstates ψn and corresponding eigenvalues an, such that
Âψn = anψn and Âψm = amψm. Now, since Â = Â†,∫ ∞

−∞
dx ψ∗

mÂψn =

∫ ∞

−∞
dx (Âψm)

∗︸ ︷︷ ︸
=ψ∗

nÂ
†

ψn

∫ ∞

−∞
dx ψ∗

manψn =

∫ ∞

−∞
dx (amψm)

∗ψn

an

∫ ∞

−∞
dx ψ∗

mψn = a∗m

∫ ∞

−∞
dx ψ∗

mψn = am

∫ ∞

−∞
dx ψ∗

mψn (as Â is Hermitian)

(an − am)
∫ ∞

−∞
dx ψ∗

mψn = 0 . (6.17)

Now, for an ̸= am for n ̸= m,
∫∞
−∞ dx ψ∗

mψn = 0.

On the other hand, for n = m,
∫∞
−∞ dx ψ∗

nψn = 1 =
∫∞
−∞ dx ψ∗

mψm. (QED)
What about the case of degenerate eigenstates? The above relation cannot distinguish
between them, and we need to find the appropriate linear combinations of such degenerate
eigenstates that are orthogonal to one another.

(3) Postulate of quantum mechanics: eigenstates of the TISE form a complete set of states ,

i.e, any other function f(x) can be expressed as a linear combination of the eigenstates ψn

f(x) =
∑
n=1

cnψn(x) . (6.18)

The states ψn(x) are then said to “span the vector space” or “form a suitable basis set”.

The superposition principle of quantum mechanics says that such linear combinations are
valid solutions of the time-dependent Schrodinger’s equation as well

Ψ(x, t) =
∑
n

Cnψn(x) exp

{
−iEnt

ℏ

}
=
∑
n

Cnϕn(x, t) ,

where ϕn(x, t) forms a complete basis of eigenstates.

Note that for such a linear combination of eigenstates with different En ,

HΨ ̸= EΨ .

What does the superposition mean physically?

It means that QM allows for the possibility that a particle in a given potential can be
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simultaneously in a mixture of different eigenstates (with different energy eigenvalues).

In order to make sense of any measurement of a physically observable quantity, the measure-
ment process is often referred to as the collapse of the wavefunction Ψ(x, t) into one of its
constituent eigenstates ϕn(x, t). Further, the weight factors Cn refer to the probabilities that
the measurement will lead to the eigenvalues of particular eigenstates ϕn. (At this point,
recall our discussion of the Schrödinger cat gedanken, or the Feynman double slit experiment
with electrons!)

Finally, if one knows the solution to the eigenvalue problem Hψn = Enψn, the superpo-
sition provides a means by which to determine the time dependence of any wavefunction Ψ.
For this, we assume that at t = 0, Ψ(x, t = 0) =

∑
nCnψn(x); then, we need to determine

the coefficients Cn∫ ∞

−∞
dx ψ∗

mΨ(x) =
∑
n

Cn

∫ ∞

−∞
dx ψ∗

mψn =
∑
n

Cnδn,m = Cm , (6.19)

where we have used the orthogonality property of eigenstates we discussed earlier. There-
fore, the coefficient Cm =

∫∞
−∞ dx ψ∗

mΨ(x) gives the weight factors. This relation can be
seen as implementing the “collapse” of the wavefunction in terms of a measurement of the
coefficient Cm, and appears to be projective in the sense that it picks out one member of
the entire Hilbert space from the rest. Such projections are typically non-unitary, i.e., they
do not preserve the total probability. Nevertheless, this is one way in which to learn the
Cm coefficients. It is not clear how to build in such processes involving measurement and
wavefunction collapse within the Schrödinger equation formalism. We will discuss this in
more detail towards the end of these lectures.

To continue, with the coefficients Cn having been computed, we can always obtain the
full time-evolved state as

Ψ(x, t) =
∑
n

Cnψn(x)e
−iEnt/ℏ . (6.20)

It is safe to say that it is this “linear superposition” property of the wavefunction in the
quantum world that scientists see as the power of a quantum computer. In some sense, such
a computer will have all the answers (in a linear superposition) to a particular question you
may ask of it (an oracle?) ... when you finally want the answer, a measurement causes the
computer’s wavefunction to collapse onto your answer! Interesting, isn’t it? In this sense,
the Schrödinger cat gedanken and the Feynman double slit experiment with electrons are
simple quantum computation setups in which the cat and the electron can have only two
possibilites that can exist in a linear superposition.

Similarly, the ammonia molecule lives in a linear superposition of the two positions of the
Nitrogen atom (above and below the plane of three Hydrogen atoms), the Benzene molecule
lives in a superposition (called the “resonance”) of the two configurations for the three
alternating double bond structures. They can be thought of as molecular quantum computers
... but can we do some useful computation with them (or an array of such molecules)?
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Figure 6.2: (Left) The Schrödinger Cat gedanken. (Right) Double-slit Interference Experi-
ment with Matter particles. Source: The internet.

Figure 6.3: (Left) The two configurations of the Ammonia molecule. (Right) The two
configurations of the Benzene molecule. Source: The internet.
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Chapter 7

Schrödinger Wave Mechanics: Bound
states

Figure 7.1: Schematic diagram for a piecewise constant potential in 1D.

For the case of piecewise constant potentials (i.e., potentials with step-like discontinuities as
shown in figure 7.1), we consider a range of x over which the potential V (x) is a constant
then the TISE can be rewritten as

− ℏ2

2m

d2ψ

dx2
+ V0ψ = Eψ (7.1)

=⇒ d2ψ

dx2
+

2m

ℏ2
(E − V0)ψ = 0 (7.2)
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Trying a guess (or ansatz ) solution ψ (x) = Cenx in Eq. 7.2, we get

n2Cenx +
2m

ℏ2
(E − V0)Cenx = 0

n2 =
2m

ℏ2
(V0 − E)

∴ n = ±
√

2m

ℏ2
(V0 − E) (7.3)

For E < V0, n ∈ R (a classically forbidden solution!),

ψ (x) = C1e
nx + C2e

−nx (7.4)

For E > V0, n = ±in̄ where n̄ ∈ R (a classically permitted solution!) and

ψ (x) = C3e
in̄x + C4e

−in̄x (7.5)

= D1 cos (n̄x) +D2 sin (n̄x) (7.6)

Here, C1, C2, C3, C4, D1, D2 are constants that are determined from boundary conditions
appropriate to the problem at hand.

For the full wavefunction over several such piecewise constant potentials, we must “stitch
together” the ψs obtained from each section by demanding continuity in ψ and dψ/dx, i.e.,
matching the wavefunction and its spatial derivative at various interfaces where the potential
jumps. The continuity is ψ leads to the continuity in probability density, while that for dψ/dx
leads to the continuity in probability current. This will give us the complete wavefunction
for all x. It also tells us that ψ can be non-zero even in regions of x that are classically
forbidden, e.g., inside a potential barrier. As we will see later, this is responsible for the
quantum mechanical phenomenon of tunneling.
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Chapter 8

Infinite square well/ Particle in a Box

Consider a potential as shown in figure 8.1.

Figure 8.1: Schematic Diagram of the potential for the particle in a 1D Box.

V (x) =

{
0 if 0 < x < a

∞ otherwise
(8.1)

The hard walls at r = 0 make the probability of finding the particle outside well to be zero
i.e., ψ (x) = 0.

Inside the well, i.e., 0 < x < a,

d2ψ

dx2
= −k2ψ , k =

√
2mE

ℏ
(E > 0) (8.2)

Here, E < 0 does not give normalizable ψ. The general solutions are

ψ (x) = A sin (kx) +B cos (kx) (8.3)
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Boundary Conditions

In general ψ (x) & dψ(x)
dx

must be continuous but where V → ∞, only the first applies.
Therefore,

ψ (0) = 0 = ψ (a) . (8.4)

Using these two boundary conditions gives

ψ (0) = 0 =⇒ A sin (0) +B cos (0) = 0

B = 0

∴ ψ (x) = A sin (kx) (8.5)

ψ (a) = 0 =⇒ A sin (ka) = 0

∴ kn =
nπ

a
, n ∈ Z (8.6)

From Eq. 8.2,

∴ En =
ℏ2k2n
2m

=
n2π2ℏ2

2ma2
, n ∈ Z = 1, 2, 3, ... . . . (8.7)

� En is discrete i.e., levels exist only for special values that are quantised in units of
π2ℏ2/2ma2

Figure 8.2: Wavefunctions (Left) and Energy Spectrum (Right) for the lowest three eigen-
states of the particle in a box problem. Source: the internet.
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Normalization

The normalizing condition given by Eq. 8.8 gives∫ ∞

−∞
|ψn|2 dx = 1 (8.8)

=⇒ |A|2
∫ a

0

dx sin2 (knx) = 1

∴ A =

√
2

a

ψn (x) =

√
2

a
sin
(nπx

a

)
(8.9)

Discussion

An important point to note about this problem is the fact that the ground state energy is
non-zero (while classically it should have been zero)! This, so called, zero-point energy
arises from the fact that the particle is not sitting still in the quantum mechanical ground
state. This can be seen from the fact that the ground state wavefunction, even if peaked at
the centre of the well (as expected classically) is actually spread out all over the well. This
“spreading out” of matter waves is typical of waves, who (unlike particles) hate being con-
fined. Indeed, the ground state energy can be shown to arise completely from the Heisenberg
uncertainty principle (and is left as an exercise to the interested reader).
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Chapter 9

Simple Harmonic Oscillator

A spring block system is a classic oscillator problem in which force is linearly proportional to
displacement. Note, however, that there is no such thing as a perfect oscillator and especially
when applying forces beyond Hooke’s law. However, for small forces applied such that the
amplitude of motion is small, the motion can be taken to be harmonic. Put differently,
about any local minima of any complicated potential, the parabolic approximation is decent
as shown in figure 9.1

Figure 9.1: (Left) A classical mass spring oscillator system. (Right) Parabolic approximation
at a minima

Let x0 be the local minima of a potential V (x) (i.e., V ′ (x0) = 0, V ′′ (x0) > 0 ). Expanding
V (x) using taylor expansion about x0 and looking at the close neighbourhood of x0 (i.e.,
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|x− x0| << 1), we get

V (x) = V (x0) + V ′︸︷︷︸
=0

(x0) (x− x0) +
V ′′ (x0)

2!
(x− x0)2 + O

(
(x− x0)3

)
≈ V (x0) +

1

2
V ′′ (x0) (x− x0)2 (9.1)

By shifting our axes so that V (x0) = 0, x0 = 0 and taking V ′′ (x0) = mω2 (the spring
stiffness), we see that V (x) in the close neighbourhood of x0 behaves like a simple harmonic
oscillator as seen in Eq. 9.2

V (x) =
1

2
mω2x2 (9.2)

The time independent Schrödinger’s equation can then be written as

− ℏ2

2m

d2ψ (x)

dx2
+

1

2
mω2x2ψ (x) = Eψ (x) (9.3)

9.1 Algebraic Method

Eq. 9.3 could be written as
1

2m

[
p2 + (mωx)2

]
ψ = Eψ (9.4)

Inspired by the following relation between two classical variables (u, v) ∈ C(
u2 + v2

)
= (iu+ v) (−iu+ v) , (9.5)

we rewrite
p2 + (mωx)2 = (ip+mωx) (−ip+mωx) + imω [x, p]︸︷︷︸

̸=0

.

Raising & lowering operators

Defining new operators a+, a−

a± =
1√

2mωℏ
(∓ip+mωx) (9.6)

[a+, a−] =
1

2mωℏ
[(−ip+mωx) (ip+mωx)− (ip+mωx) (−ip+mωx)]

=
1

2mωℏ
[
p2 − p2 +mω2x (1− 1) + 2imω (xp− px)

]
=

2imω

2mωℏ
[x, p]

= −1 (9.7)

& [a−, a+] = 1 (9.8)
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Here, a± don’t commute with each other as x, p don’t commute. The Hamiltonian H can
be written in terms of a± as given by Eqs. 9.10, 9.11.

a−a+ =
1

2mℏω
(ip+mωx) (−ip+mωx)

=
1

2mℏω
(
p2 +m2ω2x2 − imω [x, p]

)
=

1

2ℏmω
(
p2 +m2ω2x2

)
− i

2ℏ
[x, p]

=
1

ℏω
H +

1

2
(9.9)

∴ H = ℏω
(
a−a+ −

1

2

)
(9.10)

= ℏω
(
a+a− +

1

2

)
using [a−, a+] = 1 . (9.11)

SHO
spec-
trum.

If ψ is an eigenstate of H with eigenvalue E, then a+ψ is also an eigenstate with eigenvalue
(E + ℏω) and a−ψ is an eigenstate with eigenvalue (E − ℏω).
Consider

H (a+ψ) = ℏω
(
a+a− +

1

2

)
(a+ψ)

= ℏω
[
a+a−a+ +

1

2
a+

]
ψ

= ℏωa+
[
a−a+ +

1

2

]
ψ

= ℏωa+
[
a−a+ −

1

2
+ 1

]
ψ

= a+ (H + ℏω)ψ
= (E + ℏω) (a+ψ) (9.12)

Similarly,

H (a−ψ) = ℏω
(
a−a+ −

1

2

)
(a−ψ)

= ℏω
[
a−a+a− −

1

2
a−

]
ψ

= ℏωa−
[
a+a− −

1

2

]
ψ

= ℏωa−
[
a+a− +

1

2
− 1

]
ψ

= a− (H − ℏω)ψ
= (E − ℏω) (a−ψ) (9.13)
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From Eqs. 9.12, 9.13, a+ is called a raising operator while a− is called a lowering
operator.

Note that
a†+ = a− , a†− = a+ (9.14)

Thus, even though the operators a± are not Hermitian (and therefore cannot be associated
with experimental observables), we have seen that the Hamiltonian can be written in terms
of the product a+a− (or a−a+).

Ground state

As the classical global minimum energy must be zero (bottom of the potential well) for the
stability of such a confining (parabolic) potential, in order to get a normalizable (“legal”)
ψ(x), there must be a eigenstate ψ0(x) with lowest possible energy. As there are no other
states below this state, it should vanish upon the action of lowering operator a−. Thus, we
impose the condition

a−ψ0(x) = 0 (9.15)

=⇒ 1√
2ℏmω

(
ℏ
d

dx
+mωx

)
ψ0(x) = 0

dψ0

dx
= −mω

ℏ
xψ0∫

dψ0

ψ0

= −mω
ℏ

∫
xdx

lnψ0 = −
mω

2ℏ
x2 + c

ψ0 = C1e
−mωx2/2ℏ , C1 = ln c . (9.16)

Here, C1 can be calculated using the normalizing condition∫ ∞

−∞
dx |ψ0|2 = 1

=⇒ |C1|2
∫ ∞

−∞
e−mωx

2/ℏ = 1

⇒ |C1|2
√

πℏ
mω

= 1 (using

∫ ∞

−∞
dxe−x

2/a2 =

√
π

a
) ,

∴ C1 =
(mω
πℏ

)1/4
(9.17)

=⇒ ψ0 =
(mω
πℏ

)1/4
e−mωx

2/2ℏ (9.18)

ψ0 thus takes the shape of a Gaussian function in the spatial variable x, ψ ∝ e−ax
2
. Let E0
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be the energy of ψ0,

Hψ0 = E0ψ0 (9.19)

ℏω
(
a+a− +

1

2

)
ψ0 = E0ψ0

ℏωa+ (a−ψ0) +
1

2
ℏωψ0 = E0ψ0

=⇒ 1

2
ℏωψ0 = E0ψ0 (using a−ψ0 = 0)

∴ E0 =
1

2
ℏω (9.20)

Here, E0 is called as the zero-point energy. An important point to note about this problem
is the fact that the ground state energy is non-zero (while classically it should have been
zero)! In common with the particle in a box problem, this zero-point energy too arises from
the fact that the particle is not sitting still in the quantum mechanical ground state. This
can be seen from the fact that the ground state wavefunction, even if peaked at the centre
of the well (as expected classically) is actually spread out all over the well. This “spreading
out” of matter waves is typical of waves, who (unlike particles) hate being confined. Indeed,
the ground state energy can be shown to arise completely from the Heisenberg uncertainty
principle (and is left as an exercise to the interested reader). Next, we will see that applying
a+ on ψ0 recursively will give us other eigenstates with higher energy.

James Turtles
all the
way
down!

A small humorous diversion on the stability of the system. Here is an anecdote that tells
us why this concept is important. The philosopher and psychologist William James (1842-
1910) was once giving a seminar on cosmology and the solar system, and was confronted
by an elderly woman saying “Everything you’ve said is nonsense. It’s well known that the
Earth is held up on the back of seven elephants, themself standing on the back of a giant
turtle swimming through space!” Perplexed, James countered “But what, Madam, is the
turtle standing on?” Without a thought, the old lady shot back, “Clever question, Professor
James. The answer is simple: it’s turtles all the way down!” Perhaps the same could have
been said of our search for the ground state of the harmonic oscillator in the absence of the
condition imposed in eq.(9.15).

Figure 9.2: Another view of the universe. Source: the internet.
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The energy spectrum and excited states

Obtaining the energy spectrum is actually quite straightforward now. Given that we now
have the ground state ψ0 with energy eigenvalue 1

2
ℏω, we can obtain an infinite tower of

excited states by acting repeatedly on ψ0 with the raising operator a+. From what we learnt
earlier, the first excited eigenstate’s energy eigenvalue will be ℏω greater than that of the
ground state, i.e., E1 =

3
2
ℏω, E2 =

5
2
ℏω and so on. We will now see this through an explicit

calculation.

Thus, let us work out the energy eigenvalue of the first excited state n = 1 using ψ1 = A1a+ψ0

(where A1 is a normalisation constant)

Hψ1 = (a+a− +
1

2
)ℏω A1a+ψ0

E1ψ1 = A1ℏω(a+a−a+)ψ0 +
1

2
ℏωψ1

= A1ℏωa+(1 + a+a−)ψ0 +
1

2
ℏωψ1 (using [a−, a+] = 1) ,

= A1ℏωa+ψ0 +
1

2
ℏωψ1 (as a−ψ0 = 0) ,

= (1 +
1

2
)ℏωA1a+ψ0

=
3

2
ℏωψ1

∴ E1 =
3

2
ℏω . (9.21)

The entire spectrum can now be obtained by proceeding with the same strategy in an iterative
fashion. To be precise, now that we know ψ1 and its eigenvalue E1 = 3ℏω/2, we can
now define ψ2 = A2a+ψ1 and proceed exactly as given above. This will show us that
E2 = (2 + 1/2)ℏω = 5ℏω/2 :

Turtles
all the
way
down!

Hψ2 = (a+a− +
1

2
)ℏω A2a+ψ1

E2ψ2 = A2ℏω(a+a−a+)ψ1 +
1

2
ℏωψ2

= A2ℏωa+(1 + a+a−)ψ1 +
1

2
ℏωψ2 (using [a−, a+] = 1) ,

= A2ℏωa+(1 + 1)ψ1 +
1

2
ℏωψ2 (as a+a−ψ1 = (E1 −

ℏω
2
)ψ1 = ℏωψ1) ,

= (2 +
1

2
)ℏωA2a+ψ1

=
5

2
ℏωψ2

∴ E2 =
5

2
ℏω . (9.22)

Continuing in this way till the nth eigenstate ψn, using ψn = Ana+ψn−1 and En−1 = (n− ℏω
2
),
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we find En = (n+ 1/2)ℏω :

SHO
spec-
trum.

Hψn = (a+a− +
1

2
)ℏω Ana+ψn−1

Enψn = Anℏω(a+a−a+)ψn−1 +
1

2
ℏωψn

= A2ℏωa+(1 + a+a−)ψn−1 +
1

2
ℏωψn (using [a−, a+] = 1) ,

= A2ℏωa+(n− 1 + 1)ψn−1 +
1

2
ℏωψn (as a+a−ψn−1 = (En−1 −

ℏω
2
)ψn−1 = (n− 1)ℏωψn−1) ,

= (n+
1

2
)ℏωAna+ψn−1

= (n+
1

2
)ℏωψn

∴ En = (n+
1

2
)ℏω . (9.23)

In this way, we find the entire spectrum for n ∈ Z and n ≥ 0.

Now, the form of ψn = An(a+)
nψ0 is exact in principle (while getting the exact form of

(a+)
nψ0 is quite tedious!), and all we need to do is to compute the normalisation constant

An to be able to say that we have computed all the wavefunctions precisely. However,
calculating An directly by performing the action of a+ on ψ0 n times is far too tedious.
Instead, we compute An in a different way. Let us take

a+ψn = cnψn+1 , (9.24a)

a−ψn = dnψn−1 . (9.24b)

Consider,

∞∫
−∞

(a+ψn)
∗ (a+ψn) dx =

∞∫
−∞

ψ∗
na−a+ψndx (as (a+ψn)

∗ = ψ∗
na−, a

†
+ = a−) ,

|cn|2
∞∫

−∞

ψ∗
n+1ψn+1dx =

∞∫
−∞

ψ∗
n

(
1

ℏω
H +

1

2

)
ψndx (using H = (a−a+ − 1/2)ℏω) ,

|cn|2 =
1

ℏω

∞∫
−∞

ψ∗
nHψndx+

1

2

∞∫
−∞

ψ∗
nψndx

=

(
n+

1

2

)
+

1

2
(using

∞∫
−∞

ψ∗
nψndx = 1) ,

⇒ |cn|2 = n+ 1

∴ cn =
√
n+ 1 (9.25)
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Similarly consider,

∞∫
−∞

(a−ψn)
∗ (a−ψn) dx =

∞∫
−∞

ψ∗
na+a−ψndx (as (a−ψn)

∗ = ψ∗
na+, a

†
+ = a−) ,

|dn|2
∞∫

−∞

ψ∗
n−1ψn−1dx =

∞∫
−∞

ψ∗
n

(
1

ℏω
H − 1

2

)
ψndx (using H = (a+a− + 1/2)ℏω) ,

|dn|2 =
1

ℏω

∞∫
−∞

ψ∗
nHψndx−

1

2

∞∫
−∞

ψ∗
nψndx

=

(
n+

1

2

)
− 1

2
(using

∞∫
−∞

ψ∗
nψndx = 1) ,

⇒ |dn|2 = n

∴ dn =
√
n (9.26)

So, finally Eqs. 9.24a, 9.24b can be written as

ψn+1 = (n+ 1)−1/2 a+ψn (9.27a)

ψn−1 = n−1/2 a−ψn (9.27b)

Using Eqs. 9.27, ψn can be written in terms of ψ0 as

ψn = An (a+)
n ψ0 (x) =

(a+)
n

√
n!

ψ0 (9.28)

=⇒ An =
1√
n!

(9.29)
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We can also check orthogonality of ψn by using the following integral,

∞∫
−∞

(a−ψm)
∗a−ψn =

∞∫
−∞

ψ∗
ma+a−ψn =

∞∫
−∞

ψ∗
m

(
1

ℏω
H − 1

2

)
ψn

∞∫
−∞

(a−ψm)
∗ a−ψn = n

∞∫
−∞

ψ∗
mψndx

∞∫
−∞

(a+a−ψm)
∗ ψn = n

∞∫
−∞

ψ∗
mψndx (as (a−ψm)

∗a− = (a+a−ψm)
∗)

∞∫
−∞

((
1

ℏω
H − 1

2

)
ψm

)∗

ψn = m

∞∫
−∞

ψ∗
mψndx = n

∞∫
−∞

ψ∗
mψndx

∴ (m− n)
∞∫

−∞

ψ∗
mψndx = 0

=⇒
∞∫

−∞

ψ∗
mψndx = δmn (9.30)

Figure 9.3 shows the first five energy levels of the harmonic oscillator [2], their wavefunctions
(ψ) and their probability densities (|ψ|2). Note that all the wavefunctions of the harmonic
oscillator problem extend well into the classically forbidden region (i.e., outside the potential,
where V > E); as expected, the ψs decay exponentially to zero as x → ±∞. This is
a striking departure from our classical expectations. Further, the parity symmetry of the
harmonic potential (in common with the particle in a box problem!) means that the ground
state has even parity (i.e., is reflection symmetric), the first excited state has odd parity (i.e.,
is reflection anti-symmetric) and so on. Further, the excited states show the appearance of
an increasing number of nodes (i.e., zeros of the wavefunction) as n increases. The fact that
the nodes appear within the region where E > V (i.e., inside the potential) reflects the fact
that the kinetic energy (or curvature of the ψ) must increase substantially in the passage
between neighbouring eigenstates resulting in the quantisation phenomenon marked by the
quantum number n.

For n >> 1, the “envelope” of the quantum probability distribution begins to resemble the
large amplitude oscillations observed classically (as shown as the dashed line in Fig.9.4) [1].
Also, note that very little of the probability distribution of |ψ100|2 is in the classically for-
bidden region. Together, these observations are called the Correspondence Principle,
and suggest how a quantum system will turn classical. We do not, however, have a well
understood framework for understanding this passage between the two worlds as yet.
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Figure 9.3: First few eigenstates (Left) and Energy Spectrum (Right) of the quantum
mechanical harmonic oscillator.

Figure 9.4: Probability distribution of high energy eigenstate ψ100.
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9.2 Analytic Method

We solve the TISE differential equation for the simple harmonic oscillator via a series solu-
tion. Recall that the starting point is:

− ℏ2

2m

d2ψ (x)

dx2
+

1

2
mω2x2ψ (x) = Eψ (x) (9.31)

Choosing ξ =
√

mω
ℏ x, K = 2E/ℏω, Eq. 9.31 can be written as

d2ψ

dξ2
=
(
ξ2 −K

)
ψ (9.32)

For ξ2 >> K, we can approximate the TISE as

d2ψ

dξ2
≈ ξ2ψ

=⇒ ψ (ξ) ≈ Ae−ξ
2/2 +Beξ

2/2 (9.33)

=⇒ ψ (ξ) ≈ Ae−ξ
2/2 (9.34)

Here, B = 0 in Eq. 9.33, else eξ
2/2 → ∞ in the limit x → ±∞ will cause ψ to diverge. Let

us consider the following ansatz solution:

ψ (ξ) = h (ξ) e−ξ
2/2 (9.35)

Note that we have already found the Gaussian part of the solution for ψ (as observed earlier
from the algebraic solution).
Now, using Eq. 9.35, we obtain

dψ

dξ
=

(
dh (ξ)

dξ
− ξh (ξ)

)
e−ξ

2/2

d2ψ

dξ2
=

(
d2h (ξ)

dξ2
− 2ξ

dh (ξ)

dξ
+
(
ξ2 − 1

)
h (ξ)

)
e−ξ

2/2 (9.36)

Using Eq. 9.36 in Eq. 9.32,(
d2h (ξ)

dξ2
− 2ξ

dh (ξ)

dξ
+
(
ξ2 − 1

)
h (ξ)

)
e−ξ

2/2 =
(
ξ2 −K

)
h (ξ) e−ξ

2/2

⇒ d2h (ξ)

dξ2
− 2ξ

dh (ξ)

dξ
+ (K − 1)h (ξ) = 0 (9.37)
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Solving Eq. 9.37 by the Frobenius method of a power series solution:

h (ξ) = a0 + a1ξ + a2ξ
2 + · · · =

∞∑
j=0

ajξ
j (9.38)

dh (ξ)

dξ
= a1 + 2a2ξ + 3a3ξ

2 + · · · =
∞∑
j=0

jajξ
j−1 (9.39)

d2h (ξ)

dξ2
= 2a2 + 6a3ξ + · · · =

∞∑
j=0

(j + 1) (j + 2) aj+2ξ
j (9.40)

Putting Eqs. 9.38, 9.39, 9.40 in Eq. 9.37, we get

∞∑
j=0

[(j + 1) (j + 2) aj+2 − 2jaj + (K − 1) aj] ξ
j = 0 (9.41)

From the uniqueness of the power series expansion,

(j + 1) (j + 2) aj+2 − 2jaj + (K − 1) aj = 0

(9.42)

leading to the recursion relation

aj+2 =
(2j+1−K)
(j+1)(j+2)

aj

Note that this recursion relation will relate the odd number indexed coefficients among
themselves, and the even number indexed coefficients among themselves. This means that
we can write h (ξ) = heven (ξ) + hodd (ξ) where

heven (ξ) = a0 + a2ξ
2 + a4ξ

4 + · · · , (9.43a)

hodd (ξ) = a1ξ + a3ξ
3 + a5ξ

5 + · · · , (9.43b)

the recursion formula builds everything on 2 arbitrary constants, a0 and a1, as would be
expected from a 2nd order differential equation.
Now, for j >> 1, K, we can approximate the recursion relation as

aj+2 ≈
2

j
aj .

The relation aj+2 = 2aj/j has an approximate solution aj ≈ c/ (j/2)! , where c is a constant.
Then, for ξ >> 1,

h (ξ) ≈ c
∑
j

1

(j/2)!
ξj ≈ c

∑
j

1

j!
ξ2j ≈ ceξ

2

.

But since ψ = h(ξ)e−ξ
2/2, we can see that with the h(ξ) found above, ψ ∼ eξ

2/2 → ∞
as ξ → ±∞! The only way out of this divergent solution is if the power series expansion
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terminates, i.e., if an+2 = 0, which truncates either the even or the odd series, while the
other series is zero right from the start:

an+2 = 0 and a0 = 0 if n is odd

or a1 = 0 if n is even

Put another way, for a truly ∞ series, the polynomial part of ψ always dominates and leads
to a solution that diverges as ξ → ±∞. On the other hand, for any finite polynomial series,
the e−ξ

2/2 part of ψ dominates and gives a convergent, normalizable solution.

Thus, from an+2 = 0 (but an ̸= 0), we get

2n+ 1−K
(n+ 1) (n+ 2)

= 0

=⇒ K = 2n+ 1 =
2E

ℏω

∴ E =

(
n+

1

2

)
ℏω (9.44)

It appears amazing that the quantization of the energy eigenvalue, E, should arise from
a technical detail in finding the solutions to the TISE for the SHO, but the fact is that
normalizable solutions (i.e., that satisfy the boundary conditions ψ(x) → 0 for x → ±∞)
only appear for certain E values (all the other values of E give solutions but these diverge
to ±∞ as x→ ±∞).

Thus for the allowed values of K,

aj+2 = −
2 (n− j)

(j + 1) (j + 2)
aj . (9.45)

For the ground state n = 0, we take a1 = 0 to kill all terms in hodd, while j = 0 gives a2 = 0
(and hence all a4, a6 etc), such that

h0 (ξ) = a0 (9.46)

=⇒ ψ0 (ξ) = a0e
−ξ2/2 .

For the first excited state n = 1, a0 = 0 (such that all terms in heven vanish) together with
j = 1 (such that a3 = 0 = a5 = · · ·) gives

h1 (ξ) = a1ξ (9.47)

ψ1 (ξ) = a1ξe
−ξ2/2 .

For the second excited state n = 2, take a1 = 0 (such that all terms in hodd vanish) and
a2 = −2a0, and j = 2 (such that a4 = 0 = a6 = · · ·) gives

h2 (ξ) = a0
(
1− 2ξ2

)
(9.48)

ψ2 (ξ) = a0
(
1− 2ξ2

)
e−ξ

2/2 .
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In general, hn (ξ) will be a polynomial in ξ of degree n, involving only even powers when n
is even and only odd powers when n is odd. Apart from constants a0, a1, these polynomials
form are the so-called Hermite Polynomials Hn(ξ):

H0 (ξ) = 1

H1 (ξ) = 2ξ

H2 (ξ) = 4ξ2 − 2

H3 (ξ) = 8ξ3 − 12ξ

H4 (ξ) = 16ξ4 − 48ξ2 + 12

H5 (ξ) = 32ξ5 − 160ξ3 + 120ξ

where an arbitrary multiplicative factor is chosen such that the coefficient of the highest
power of ξ is 2n.
Thus, we obtain the eigenfunctions for the S.H.O. as

ψn (ξ) =
(mω
πℏ

)1/4 1√
2nn!

Hn (ξ) e
−ξ2/2 (9.49)

where the (mω/πℏ)1/4 factor comes from normalising ψ0 and ψ1 to learn the constants a0
and a1 respectively, and the (n!)−1/2 factor we had already learnt from the algebraic solution.

Figure 9.5: First few eigenstates (Left) and Energy Spectrum (Right) of the quantum
mechanical harmonic oscillator.

It is important to note that the additional zeros (“nodes”) of the excited wavefunctions
ψn (n ≥ 0) (over and above the nodes at x → ±∞ imposed by the boundary conditions)
arises from the zeros of the Hermite polynomials Hn(ξ). Further, the Hn(ξ) are odd and
even under the parity (reflection) transformation for n ∈ odd and even respectively.
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Chapter 10

Free particle

For a free particle, V (x) = 0 and the TISE is:

− ℏ2

2m

d2ψ

dx2
= Eψ (10.1)

ψ′′ = −k2ψ where k =

√
2mE

ℏ2
, E ≥ 0 (10.2)

The general solution is:

Ψ (x, t) = ψ (x) e−iEt/ℏ

=
(
Aeikx +Be−ikx

)
e−iEt/ℏ

= Aeik(x−
ℏk
2m

t) +Be−ik(x+
ℏk
2m

t) (10.3)

Eq. 10.3 shows a superposition of right going wave (x− vt) and a left going wave (x+ vt)
moving with speed v = ℏk/2m =

√
E/2m, momentum p = ℏk.

Note that the classical velocity of the particle vcl =
√

2E/m. This paradox is resolved in the
following way: The wavefunction given by Eq. 10.3 is not normalizable i.e., it doesn’t die out
at ±∞. This tells us that such separable solutions do not represent physically reasonable
states for a free particle. Instead, a solution can be found by taking a linear combination of
Eq. 10.3 (shown in Eq. 10.4) with different velocities so that they are normalizable. Indeed,
this localizes the wave-function giving rise to the idea of “wave-packet”.

Ψ (x, t) =
1√
2π

∞∫
−∞

ϕ (k) e
i
(
kx− ℏk2

2m
t
)
dk (10.4)

This ψ (x, t) can be normalized for appropriate ϕ (k). Note that it contains an entire range
of k’s – hence the wavepacket. The simpler problem is to find the ϕ (k) for ψ (x, t = 0) (the
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initial wavefunction).

Ψ (x, 0) =

∞∫
−∞

ϕ (k)√
2π
eikxdk (10.5)

At this point, we can define the Fourier transform F (k) of a function f (x) (as well as the
and inverse Fourier transform) as

F (k) =
1√
2π

∞∫
−∞

f (x) e−ikxdx (10.6)

f (x) =
1√
2π

∞∫
−∞

F (k) eikxdk (10.7)

Any normalizable ψ (x, 0) will have a valid Fourier transform. So,

ϕ (k) =
1√
2π

∞∫
−∞

e−ikxΨ(x, 0) dx (10.8)

Now the wave packet has a phase velocity vph = ω/k and a group velocity vg = dω/dk.
Taking ω = E/ℏ,

ω =
ℏk2

2m
(10.9)

vph =
ℏk
2m

(10.10)

vgr =
ℏk
m

= 2vph (10.11)

(Revise your concepts of phase and group velocity!)
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Chapter 11

Scattering Processes and Quantum
Tunneling

Having learnt the basics of the solution for the free particle problem in quantum mechanics,
we will now study a couple of problems that involve us understand how matter waves can
be scattered from some simple potentials. In doing so, we will be using the simple e±ikx

type waveforms that we encountered in the previous chapter, and not the somewhat more
complex matter wavepacket. This is more for ease of convenience, as the maths is somewhat
harder for the wavepackets than it is for the simple e±ikx waveforms. For those who are
worried about normalisability of the wavefunctions, you can view the wavepacket as being
composed out of a huge number of such e±ikx waves. Thus, we can always learn the physics
of scattering from the simpler situations, and then use the idea of wavepacket construction
to create the mathematically correct solutions.

11.1 Step potential

Consider a step potential as shown in figure 11.1 given by

V (x) =

{
0 if x < 0 (region I)

V0 if x ≥ 0 (region II)
(11.1)

Figure 11.1: A schematic diagram of V (x)

84



Clasically, an incoming particle from the left will bounce back from the step if E < V0 and
will be able to move to region II if E > V0 with a changed momentum. Let’s see what
quantum mechanics tells us.

The TISE is:

d2ψ

dx2
+

2mE

ℏ2
ψ = 0 x < 0 (Region I)

d2ψ

dx2
+

2m

ℏ2
(E − V0)ψ = 0 x ≥ 0 (Region II)

Boundary conditions:

(i) ψ
(
x→ 0−

)
= ψ

(
x→ 0+

)
(11.2a)

(ii)
dψ

dx

∣∣∣∣
x→0−

=
dψ

dx

∣∣∣∣
x→0+

(11.2b)

For E > V0, since E > 0 & (E − V0) > 0, we can use the “free-particle” eikx type ψ
everywhere.

ψ (x) =

Aeik1x +Be−ik1x x < 0, k1 =
√

2mE
ℏ2

Ceik2x +De−ik2x x ≥ 0, k2 =
√

2m(E−V0)
ℏ2

(11.3)

For a particle coming towards the step from the left, D = 0 on physical grounds. Thus the
two boundary conditions gives us:

(i) A+B = C (11.4)

(ii) ik1 (A−B) = ik2C (11.5)

On general grounds, we can choose to measure all fluxes(or amplitudes) of particle relative
to the incoming flux which is equivalent to taking A = 1. In this case

(i) 1 +B = C (11.6)

(ii) k1 (1−B) = k2C (11.7)

=⇒ B =
k1 − k2
k1 + k2

& C =
2k1

k1 + k2
(11.8)

Then the coefficients B, C can be interpreted as the reflection amplitude r and the
transmission amplitude t respectively. Do these relations for r and t appear familiar from
something you may have seen in wave optics? The corresponding reflection and transmission
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coefficients R, T are given by

R = |r|2 = B2

=
(k1 − k2)2

(k1 + k2)
2 =

(√
E −

√
E − V0

)2
(√

E +
√
E − V0

)2 (11.9)

T = |t|2 = C2

=
4k21

(k1 + k2)
2 =

4E(√
E +
√
E − V0

)2 (11.10)

Also, note that

R +
k2
k1
T = 1 (11.11)

In order to see such scattering, we have to take the length scale over which the step exists is
much smaller compared to de Broglie λ of the quantum particle. In the opposite regime, we
will see only classical results.

For E < V0,

ψ (x) =

Aeik1x +Be−ik1x x < 0, k1 =
√

2mE
ℏ2

Cek2x +De−k2x x ≥ 0, k2 =
√

2m(V0−E)
ℏ2

(11.12)

Unless C = 0, ψ → ∞ as x → ∞. So, C = 0 and A = 1 following the same logic as in the
previous case. Applying boundary conditions given in Eq. 11.2 we get

1 +B = D (11.13)

ik1 (1−B) = −k2D (11.14)

=⇒ B =
k1 − ik2
k1 + ik2

& D =
2k1

k1 + ik2
(11.15)

The reflection, transmission amplitudes will be

R = |r|2 = |B|2

=

∣∣∣∣k1 − ik2k1 + ik2

∣∣∣∣2 = 1 (11.16)

=⇒ T =
k1
k2

(1−R) = 0 (11.17)

Even if the transmission amplitude T is zero, ψ (x) ̸= 0 at x ≥ 0. This means there is a non-
zero probability to find the particle under the step (even though this may be experimentally
quite challenging!). Note: only when V0 → ∞, ψ (x) → 0 for x ≥ 0. This phenomenon has
no classical particle analog and is responsible for tunneling when we have a barrier of finite
extent (the next case we will study!). However, an analogy can be drawn to the phenomenon
of evanescent waves in total internal reflection of e-m waves at a boundary between dense
and rare media. For this, revise Fresnel’s theory for reflection and refraction of e-m waves.
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11.2 Potential Barrier & Tunneling

Instead of the step potential shown in Figure 11.1, consider a barrier potential given by 11.18
and shown in Figure 11.2

V (x) =


0 if x < 0 (region I)

V0 if 0 ≤ x ≤ a (region II)

0 if x > a (region III)

(11.18)

Figure 11.2: A potential barrier

Solving the TISE in each of the three regions individually means that we can take ψ (x) as

ψ (x) =


eik1x + re−ik1x x < 0, k1 =

√
2mE
ℏ2

Aeik2x +Be−ik2x 0 ≤ x ≤ a, k2 =
√

2m(E−V0)
ℏ2

teik1x x > a, k1 =
√

2mE
ℏ2

(11.19)

Note that we have already used the boundary condition of an incoming particle from the
left with a probability amplitude set to 1, while r and t give the probability amplitudes
for reflection and transmission respectively. Further, E is the energy eigenvalue of the
Hamiltonian for the full problem. It is also identical to the kinetic energy of the particle in
regions I and III. To evaluate the four unknowns r, A, B, t, we use the continuity conditions
on ψ (x) and dψ/dx at both x = 0 & x = a, giving

ψ(x→ 0−) = ψ(x→ 0+)⇒ 1 + r = A+B (11.20a)

ψ′(x→ 0−) = ψ′(x→ 0+)⇒ ik1 (1− r) = ik2 (A−B) (11.20b)

ψ(x→ a−) = ψ(x→ a+)⇒ teik1a = Aeik2a +Be−ik2a (11.20c)

ψ′(x→ a−) = ψ′(x→ a+)⇒ ik1te
ik1a = ik2

(
Aeik2a −Be−ik2a

)
(11.20d)

We set µ = k2/k1 =
√

1− V0/E. Then solving the set of Eqs. 11.20 after some lengthy
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algebra, we get

r =
(1− µ2) sin (k2a)

(1 + µ2) sin k2a+ 2iµ cos k2a
(11.21a)

t =
2iµe−ik1a

(1 + µ2) sin k2a+ 2iµ cos k2a
(11.21b)

A =
i (1 + µ) e−ik2a

(1 + µ2) sin k2a+ 2iµ cos k2a
(11.21c)

B =
−i (1− µ) eik2a

(1 + µ2) sin k2a+ 2iµ cos k2a
(11.21d)

For E > 0 and E ≥ V0, k1, k2 and µ ∈ R. Then, the transmission coefficient is given by

T = |t|2 = 4µ2

(1 + µ2)2 sin2 k2a+ 4µ2 cos2 k2a

=
4µ2

4µ2 + (1− µ2)2 sin2 k2a
=

1

1 + 1
4

(
1−µ2
µ

)2
sin2 k2a

=
1

1 + 1
4

(
k21−k22
k1k2

)2
sin2 k2a

(11.22)

Note that the reflection coefficient R = 1 − T . Both R and T are plotted in Fig.11.3 as a
function of E/V0. Whenever k2a = nπ the system is in resonance and there will be perfect

Figure 11.3: Transmission, Reflection coefficients as a function of ϵ = E/V0

transmission T = 1 , R = 0 (see Fig.11.3). We also see that T oscillates and finally becomes
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asymptotically equal to 1 for E >> V0; this is seen by taking µ→ 1 in the expression for T
in eq.(11.22). The criterion for the nth Resonance is given by the energy En

k2a =

√
2m (E − V0)

ℏ2
a = nπ

En = V0 +
n2π2ℏ2

2ma2
(11.23)

= V0

(
1 +

n2π2ℏ2

2mV0a2

)
(11.24)

Where do these resonances arise from? A simple way to picture them is to recall the Fabry-
Perot resonances that arise within a cavity: light bouncing back and forth between the two
“leaky” mirrors of the F-P cavity leads to a sequence of reflections and transmissions at
the two mirrors, giving rise to standing waves within the cavity. A similar phenomenon
is happening here for the wavefunction of the electron when over the barrier: there is a
sequence of back and forth reflections and transmissions that happen at the two interfaces
(at the two ends of the barrier) that fit together to form a perfect standing wave pattern at
resonance. This is also indicated by the energy n2π2ℏ2/2ma2 (i.e., the eigenenergy of the
standing waves formed in the particle in a box problem!) appearing in eq.(11.23). It is from
this standing wave pattern that the perfect T = 1 arises from adding up the entire sequence
of transmission probability amplitudes coherently. Similarly, R = 0 arises from adding up
the entire sequence of reflection probability amplitudes coherently.

Figure 11.4: (Left) The Fabry-Perot Cavity, displaying the sequence of reflections and
transmissions of e-m waves at the two leaky mirrors and (Right) the Transmission coefficient
of the F-P cavity as a function the e-m wavelength. Source: The internet.
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At the limit E0 → V +
0 , k2 → 0 =⇒ µ→ 0+,

k21 − k22
k1k2

≈ k21
k1k2

≈ k1
k2

=⇒ T ≈

(
1 +

1

4

(
k1
k2

)2

k22a
2

)−1

≈ 1− 1

4
k21a

2 ≈ 1− 1

4

(
2mV0
ℏ2

)
a2

≈ 1− mV0a
2

2ℏ2
(11.25)

Figure 11.5: Transmission, Reflection coefficients as a function of Energy ϵ

For E < V0, k2 becomes imaginary

k2 = iK =
i

ℏ
√
2m (V0 − E)

=⇒ T = |t|2 = (2k1/K)2(
1− k21

K2

)2
sinh2 (Ka) +

(
2k1
K

)2
cosh2 (Ka)

(11.26)

Thus, we can see that T → 0 and R = 1 − T → 1 as E → 0+, joining smoothly onto the
expressions for T and R given by (11.25) as E → V −

0 (see Fig.11.3). An application of the
phenomenon of quantum tunneling is realised in the scanning tunneling microscope (STM)
shown below in Fig.11.6.
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Figure 11.6: (Above) The physics of the scanning tunneling microscope (STM) is based
on the phenomenon of quantum tunneling of electrons between the sample surface and the
atoms of the STM tip and across a vacuum “barrier”. The tunnel current IT depends on how
easily sample surface electrons are available for such tunneling events, giving an indication
of the nature of the atoms on the sample surface in terms of a picture. (Below) A “quantum
corral” observed via STM measurements of Iron atoms placed on a Cu surface. Source: The
internet.
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Chapter 12

Time Independent Schrödinger
Equation (TISE) in 3D

In 3D, the time dependant, independant Schrödinger equations is given by

− ℏ2

2m
∇2ψ (r, t) + V (r)ψ (r, t) = iℏ

∂ψ (r, t)

∂t
(12.1)

− ℏ2

2m
∇2ψ (r) + V (r)ψ (r) = Eψ (r) (12.2)

In solving the TISE in 3D, we need to choose a system of coordinates: rectangular, cylindrical
& spherical, which are best chosen by noting any symmetries of the potential V (r), e.g., for
a central force F (r) which arises from a V (|r|) is most approximately (and easily) solved
using spherical coordinates.

12.1 The Particle in a 3D Box

As a warm up, lets first consider the simpler problem of the infinite square well in 3D, which
can be solved using rectangular coordinates.

V (r) =


0 when 0 < x < a

0 < y < b

0 < z < c

∞ otherwise

(12.3)

Thus inside the box,

− ℏ2

2m
∇2ψ (r) = Eψ (r)(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ = −2mE

ℏ2
ψ (12.4)

92



Using the idea of separation of variables, we take the trial wavefunction

ψ (x, y, z) = ψ1 (x)ψ2 (y)ψ3 (z) (12.5)

Putting Eq. 12.5 in Eq. 12.4,

1

ψ1 (x)

∂2ψ1 (x)

∂x2
+

1

ψ2 (y)

∂2ψ2 (y)

∂y2
+

1

ψ3 (z)

∂2ψ3 (z)

∂z2
= −2mE

ℏ2

Since the LHS has nicely factorized out into three separate equations & the RHS is a constant
independant of (x, y, z), we can take

1

ψ1

∂2ψ1

∂x2
= −2mEx

ℏ2
1

ψ2

∂2ψ2

∂y2
= −2mEy

ℏ2
1

ψ3

∂2ψ3

∂z2
= −2mEz

ℏ2

Here, E = Ex+Ey+Ez. We thus have 3 independent 1D infinite square well problems with

ψ1 (x) = A1 sin
nxπx

a
, ψ2 (y) = A2 sin

nyπy

a
, ψ3 (z) = A3 sin

nzπz

a
(12.6)

Ex =
ℏ2π2

2ma2
n2
x, Ey =

ℏ2π2

2mb2
n2
y, Ez =

ℏ2π2

2mc2
n2
z (12.7)

Then,

ψ (r) = A sin
(nxπx

a

)
sin
(nyπy

b

)
sin
(nzπz

c

)
(12.8)

E = Ex + Ey + Ez

=
ℏ2π2

2m

(
n2
x

a2
+
n2
y

b2
+
n2
z

c2

)
(12.9)

where A = A1A2A3. For the special case of a cube (a = b = c)

ψ (r) = A sin
(nxπx

a

)
sin
(nyπy

a

)
sin
(nzπz

a

)
(12.10)

E =
ℏ2π2

2ma2
(
n2
x + n2

y + n2
z

)
(12.11)

The ground state is given by (nx = 1, ny = 1, nz = 1), as ψ = 0 for any one of these
three indices being zero. The corresponding ground state energy is E(1,1,1) = 3ℏ2π2/2ma2.
Further, we can see that the three states (nx, ny, nz) = (1, 2, 1), (1, 1, 2), (2, 1, 1) all have
the same energy E(1,2,1 = 6ℏ2π2/2ma2 = E(1,1,2) = E(2,1,1), and correspond to a triplet of
the lowest lying excited states. This is the phenomenon of “degeneracy” (when 2 or more
eigenstates with distinct ψ have the same E). Here, the wavefunctions are related by pair-
wise interchanges of the x, y & z axes (interchanges one face of the cube with another) which
leaves the potential unchanged (the symmetry of the cube). However, such a degeneracy
needs the tuning of atleast two parameters here (say, b and c with respect to a) so as to meet
a = b = c. This means that this degeneracy is “accidental” (i.e., fragile), and is easily lifted
by moving even slightly away from the condition a = b = c.
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Chapter 13

Formalism II : Vector Spaces in
Quantum Mechanics

13.1 Vector Spaces

Figure 13.1: Left: Renée Descartes. Right: A vector in Cartesian coordinatestt. Source:
The Internet.

We are already familiar with 2D and 3D spaces that can accommodate vectors. Generalising
this to n > 3 dimensions means that for

(i) u⃗ = (u1, u2, u3, . . . , un) , v⃗ = (v1, v2, v3, . . . , vn), we need a “rule for vector addition”

u⃗+ v⃗ = (u1 + v1, u2 + v2, u3 + v3, . . . , un + vn) = w⃗ , (13.1)

as well as
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(ii) a “rule for the multiplication of a vector by a scalar”

r⃗ = cu⃗ , (13.2)

where c ∈ R for a vector space of real-valued vectors and c ∈ C for a vector space of
complex-valued vectors (as in quantum mechanics).

Finally, we also need a “rule for the dot product” between two vectors that leads to a scalar
quantity

u⃗ · v⃗ = u1v1 + u2v2 + . . .+ unvn . (13.3)

Examples of vector spaces includes
(a) the set of all real numbers, where each real number is a one-component vector and the
entire set forms a 1D vector space, and
(b) the set of (suitably defined) functions f(x) is an infinite-dimensional vector space, since
f(x) + g(x) = h(x) and g(x) = cf(x) are well-defined operations.

13.1.1 Dimension of a vector space:

The dimension of a vector space is the maximum number of linearly independent vectors
the space can have (also known as “the basis”). This number can be infinite. For a N -
dimensional vector space with a basis given by (ϕ1, ϕ2, . . . , ϕN) such that any vector ψ can
be written as

ψ =
N∑
i=1

aiϕi , (13.4)

i.e., a vector ψ can be written in terms of a linear superposition of the ϕis, where the ϕis form
a “complete set which spans the entire set”. The coefficients (or weight factors) of the various
components of the vector ψ, ai, are the projections of ψ onto the various “orthogonal” (or
“normal”) directions given by ϕi. To understand this better, we need to define the “dot”.
“scalar” or “inner product” ⟨ϕi|ϕj⟩ such that

ai = ⟨ψ|ϕi⟩ , (13.5)

and for a set of orthonormal basis vectors {ϕi}

⟨ϕi|ϕj⟩ = δij , (13.6)

where the Kronecker delta is defined as δij = 1 for i = j, and 0 otherwise.

13.1.2 More on the Inner Product

Defining a “dot” product for a finite dimensional vector space is easy, but what about for
an infinite-dimensional vector space (e.g., the space of functions)? For such cases, we need
to construct a more abstract concept called the “Inner Product”. Just as the dot product
of two finite dimensional vectors gives a real number, by analogy, we consider the Inner
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Product of two vectors, ψ and ϕ, of an abstract vector spaceto be a function which uses ψ
and ϕ as inputs and whose result is (in general) a complex number

⟨ψ|ϕ⟩ = c , c ∈ C . (13.7)

The Inner Product has the following properties:

(i) ⟨ψ + ϕ|θ⟩ = ⟨ψ|θ⟩+ ⟨ϕ|θ⟩
(ii) ⟨ψ|cϕ⟩ = c⟨ψ|ϕ⟩
(iii) ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗

(iv) ⟨ψ|ψ⟩ ≥ 0 .

Using relations (ii) and (iii) from above, we can see that

⟨ϕ|cψ⟩∗ = c∗⟨ϕ|ϕ⟩∗

= c∗⟨ψ|ϕ⟩
But ⟨ϕ|cψ⟩∗ = ⟨cψ|ϕ⟩
⇒ ⟨cψ|ϕ⟩ = c∗⟨ψ|ϕ⟩ .

The inner product for the set of complex-valued functions defined in 3D is

⟨f(r⃗)|g(r⃗)⟩ =
∫ ∞

−∞
dxdydzf(r⃗)∗g(r⃗) . (13.8)

In 1D, this becomes ⟨f(x)|g(x)⟩ =
∫∞
−∞ dxf ∗(x)g(x), such that for

f(x) = sin x , g(x) = x sinx

⟨f(x)|g(x)⟩ =

∫ ∞

−∞
dxf ∗(x)g(x)

=

∫ ∞

−∞
x sin2 x

→ 0 ,

as the argument x sin2 x is an odd function in x.
Finally, the requirement that the wavefunction ψ(x) be normalised can now be recast as

⟨ψ|ψ⟩ = 1 , (13.9)

i.e., the “length” of ψ is set of 1. Further, the Expectation value of an operator θ̂ can be
defined as

⟨θ̂⟩ = ⟨ψ|θ̂|ψ⟩ ≡ ⟨ψ|θ̂ψ⟩ . (13.10)
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13.2 The Dirac Bra-Ket Notation

Dirac Hilbert

The vector space of function that we’re interested in Quantum Mechanics is that of wave-
functions such that

⟨ψ|ψ⟩ =
∫
d3x|ψ(r)|2 = 1 , (13.11)

i.e., the ψs are both square-integrable and normalisable. Such a vector space is an example
of a linear vector space called a Hilbert space. Thus, the physical state of a system is
represented by elements of a Hilbert space called “state vectors”. We do have freedom in
how to choose to represent these state vectors by means of an expansion using different
functions. This is called the “choice of basis”, and is analogous to being able to representing
a 3D coordinate system using the (x, y, z), (r, θ, ϕ) or (ρ, ϕ, z) coordinates.

It is, however, important to note that the meaning of the state of a system is independent
of the basis of functions we choose. To highlight the usefulness of adopting the concept of
an abstract vector space (from which all physical representations of the state vectors could
be obtained), the physicist Dirac introduced the “bra-ket” notation of Quantum mechanics:

Ket: |ψ⟩ belongs to (i.e, is an element of) an abstract Hilbert state vector space

Bra: ⟨ψ| belongs to an abstract Hilbert space dual to that whose elements are the Kets
|ψ⟩

Scalar/Inner Product: defined between members of the two dual Hilbert spaces ⟨ϕ|ψ⟩

Expectation Value of an operator: ⟨θ̂⟩ = ⟨ψ|θ̂|ψ⟩ ≡ ⟨ψ|θ̂ψ⟩

Basis choice: ψ(r⃗, t) = ⟨r⃗, t|ψ⟩ (Position Representation) , ψ(p⃗, t) = ⟨p⃗, t|ψ⟩ (Mo-
mentum Representation) .

Thus, while the Kets are independent of any particular basis choice, they represent the system
completely, and hence knowing the Hilbert space {|ψ⟩} means knowing all its amplitudes
(read wavefunctions) in all possible representations.

13.3 Properties of |ψ⟩, ⟨ψ| and ⟨ϕ|ψ⟩
1. To every |ψ⟩, there exists a unique ⟨ψ| and vice versa:

|ψ⟩ ↔ ⟨ψ| (13.12)

There is a one-to-one correspondence between bras and kets

a|ψ⟩+ b|ϕ⟩ ↔ a∗⟨ψ|+ b∗⟨ϕ| a, b ∈ C (13.13)

|aψ⟩ = a|ψ⟩ & ⟨aψ| = a∗⟨ψ| . (13.14)
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2. In Quantum Mechanics, as the scalar product is a complex number in general, the ordering
matters, i.e., ⟨ψ|ϕ⟩ is not necessarily the same as ⟨ϕ|ψ⟩. Then,

⟨ϕ|ψ⟩∗ = (

∫
dr⃗ϕ∗(r⃗, t)ψ(r⃗, t))∗ =

∫
dr⃗ψ∗(r⃗, t)ϕ(r⃗, t) = ⟨ψ|ϕ⟩

i.e., ⟨ϕ|ψ⟩∗ = ⟨ψ|ϕ⟩ . (13.15)

For the special case of |ψ⟩, |ϕ⟩ ∈ R, ⟨ϕ|ψ⟩∗ = ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩ .
Further,

⟨ψ|a1ψ1 + a2ψ2⟩ = a1⟨ψ|ψ1⟩+ a2⟨ψ|ψ2⟩ (13.16)

⟨a1ϕ1 + a2ϕ2|ψ⟩ = a∗1⟨ϕ1|ψ⟩+ a∗2⟨ϕ2|ψ⟩ (13.17)

⟨a1ϕ1 + a2ϕ2|b1ψ1 + b2ψ2⟩ = a∗1b1⟨ϕ1|ψ1⟩+ a∗1b2⟨ϕ1|ψ2⟩+ a∗2b1⟨ϕ2|ψ1⟩+ a∗2b2⟨ϕ2|ψ2⟩ .(13.18)

3. For any state vector |ψ⟩ of a Hilbert space H, the norm (“length”) ⟨ψ|ψ⟩ is real and
positive definite

⟨ψ|ψ⟩ ≥ 0 , ⟨ψ|ψ⟩ ∈ R . (13.19)

Further, is the state |ψ⟩ is normalised, ⟨ψ|ψ⟩ = 1 .

4. For two states |ψ⟩ and |ϕ⟩ such that ⟨ψ|ϕ⟩ = 0, the two states are said to be “orthogonal”.

If in addition, ⟨ψ|ψ⟩ = 1 = ⟨ϕ|ϕ⟩, the two states are said to be “orthonormal”.

5. Schwarz Inequality: |⟨ψ|ϕ⟩|2 ≤ ⟨ψ|ψ⟩⟨ϕ|ϕ⟩ (equality holds for |ψ⟩ = a|ϕ⟩ , a ∈ C).
Analogy with relation between vectors in Euclidean space: |A⃗ · B⃗|2 ≤ |A⃗|2|B⃗|2 .

6. Triangle Inequality:
√
⟨ψ + ϕ|ψ + ϕ⟩ ≤

√
⟨ψ|ψ⟩+

√
⟨ϕ|ϕ⟩ (equality for |ψ⟩ = a|ϕ⟩ , a ∈

R and a > 0).

Analogy with relation between vectors in Euclidean space: |A⃗+ B⃗| ≤ |A⃗|+ |B⃗| .

Note that products like |ψ⟩|ϕ⟩ and ⟨ψ|⟨ϕ| are meaningless if |ψ⟩ and |ϕ⟩ belong to the
same Hilbert space H. However, if |ψ⟩ and |ϕ⟩ belong to different Hilbert spaces (e.g., real
space wavefunctions and Spin angular momentum states), then products such as |ψ⟩|ϕ⟩ and
⟨ψ|⟨ϕ| are meaningful and are called “Direct Product”.

Physical meaning of ⟨ψ|ϕ⟩: First, ⟨ψ|ϕ⟩ represents the projection of the state vector
|ψ⟩ onto the state vector |ϕ⟩. Second, for the states |ψ⟩ and |ϕ⟩ being normalised, and from
Born’s probabilistic interpretation of Quantum Mechanics, the quantity ⟨ψ|ϕ⟩ represents the
probability amplitude that the system’s initial state |ϕ⟩ will, after measurement, be projected
onto another state |ψ⟩.

13.4 Operators

1. Operators are mathematical rules such that

Â|ψ⟩ = |ψ′⟩ , ⟨ϕ|Â = ⟨ϕ′| . (13.20)
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2. Products of Operators: In general, the product

[Â, B̂] = ÂB̂ − B̂Â ̸= 0 (13.21)

⇒ ÂB̂ ̸= B̂Â . (13.22)

Further, ÂB̂Ĉ = Â(B̂Ĉ) = (ÂB̂)Ĉ (13.23)

ÂmÂn = Âm+n (13.24)

ÂB̂Ĉ|ψ⟩ = ÂB̂(Ĉ|ψ⟩) = Â{B̂(Ĉ|ψ⟩)} . (13.25)

3. Linearity:

Â(a1|ψ1⟩+ a2|ψ2⟩) = a1Â|ψ1⟩+ a2Â|ψ2⟩ (13.26)

(a1⟨ψ1|+ a2⟨ψ2|)Â = a1⟨ψ1|Â+ a2⟨ψ2|Â . (13.27)

4. Expectation Value:

⟨Â⟩ = ⟨ψ|Â|ψ⟩
⟨ψ|ψ⟩

≡ ⟨ψ|Â|ψ⟩ (if |ψ⟩ is normalised) (13.28)

= ⟨ψ|Âψ⟩ . (13.29)

5. Projection Operators: |ϕ⟩⟨ψ| is a linear operator

|ϕ⟩⟨ψ|ψ′⟩ = ⟨ψ|ψ′⟩|ϕ⟩ , (13.30)

|ψ⟩⟨ψ|ψ′⟩ = ⟨ψ|ψ⟩|ψ⟩ , (13.31)

where ⟨ψ|ψ′⟩ ∈ C is the probability amplitude arising from the projection.

6. Operations such as |ψ⟩Â and Â⟨ψ| are not sensible.

7. The operator “adjoint” to θ̂ is θ̂† such that

⟨ϕ|θ̂ψ⟩ = ⟨θ̂†ϕ|ψ⟩ . (13.32)

For example, let us work out the adjoint of the differential operator D̂ ≡ d
dx
, i.e., D̂†.

⟨ϕ|D̂ψ⟩ =

∫ ∞

−∞
dx ϕ∗(x)

dψ(x)

dx
(in position basis) (13.33)

= [ϕ∗(x)ψ(x)]∞−∞ −
∫ ∞

−∞
dx

dϕ∗(x)

dx
ψ(x) (13.34)

= −
∫ ∞

−∞
dx

dϕ∗(x)

dx
ψ(x) (as ϕ(x), ψ(x)→ 0 as x→ ±∞) (13.35)

⇒ ⟨ϕ|D̂ψ⟩ = −
∫ ∞

−∞
(−D̂ϕ∗(x))ψ(x) (13.36)

= ⟨−D̂ϕ|ψ⟩ ≡ ⟨D̂†ϕ|ψ⟩ (13.37)

⇒ D̂† = −D̂ . (13.38)
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Adjoint Operators have the following properties:

(i) (cP̂ )† = c∗P̂ † (c ∈ C) (13.39)

(ii) (P̂ + Q̂)† = P̂ † + Q̂† (13.40)

(iii) (P̂ Q̂)† = Q̂†P̂ † (13.41)

(iv) (P̂ †)† = P̂ . (13.42)

Relation (iii) can also be seen as follows:

⟨ϕ|P̂ (Q̂ψ)⟩ = ⟨P̂ †ϕ|Q̂ψ⟩ (13.43)

= ⟨Q̂P̂ϕ|ψ⟩ . (13.44)

8. Self-adjoint or “Hermitian” Operators: θ̂† = θ̂ !
For example, the position operator x̂ is Hermitian: x̂† = x̂ .
The momentum operator p̂ = −iℏ d

dx
is also Hermitian:

p̂† = −p̂∗ = −(−iℏ d
dx

)∗ = p̂ . (13.45)

Hermitian Operators are special, as their expectation values are real-valued:

⟨Q̂⟩ = ⟨ψ|Q̂ψ⟩ (13.46)

= ⟨ψ|Q̂†ψ⟩ (for Q̂ = Q̂†) (13.47)

= ⟨Q̂ψ|ψ⟩ (13.48)

= ⟨Q̂⟩∗ , (13.49)

⇒ ⟨Q̂⟩ ∈ R . (13.50)

Similarly, if |ψ⟩ is an eigenfunction of a Hermitian operator Q̂ with eigenvalue q, i.e., Q̂|ψ⟩ =
q|ψ⟩ ,

⟨ψ|Q̂ψ⟩ = q⟨ψ|ψ⟩ = q (13.51)

But ⟨ψ|Q̂ψ⟩ = ⟨Q̂†ψ|ψ⟩ (13.52)

= ⟨Q̂ψ|ψ⟩ = q∗⟨ψ|ψ⟩ = q∗ (13.53)

⇒ q ∈ R . (13.54)

Finally, writing

⟨Q̂⟩ = ⟨ψ|Q̂|ψ⟩ (where the states |ψ⟩ are not eigenstates of Q̂) (13.55)

=
∑
m,n

⟨ψ|ξ⟩mm⟨ξ|Q̂|ξ⟩nn⟨ξ|ψ⟩ (where we’ve introduced the identity operator(13.56)

I =
∑
n

|ξ⟩nn⟨ξ| in terms of eigenstates of Q̂, |ξ⟩n) (13.57)

=
∑
m,n

∫ ∫
dxdy ξ∗m(x)δm,nQnξn(y) (as Q̂|ξ⟩n = Qnξ⟩n = Qn) (13.58)

(13.59)
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Chapter 14

The Angular Momentum problem:
first passage

14.1 Introduction

For a classical particle, the angular momentum vector is given by

L = r× p (14.1)

In quantum mechanics, the variables r, p are replaced by operators R, p = −iℏ∇.

L = r× p

= Lxx̂+ Lyŷ + Lz ẑ (14.2)

Here,

Lx = ypz − zpy
Ly = zpx − xpz
Lz = xpy − ypx

Are the components of L Hermitian?

L†
x = (ypz)

† − (zpy)
† = p†zy

† − p†yz†

= pzy − pyz
= ypz − zpy = Lx

L† = L (14.3)

Let us try computing [Lx, Ly] now. First note that

[Rα, pβ] = ihδαβ (14.4)

[A+B,C] = [A,C] + [B,C] (14.5)

[AB,C] = A [B,C] + [A,C]B (14.6)
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Thus,

[Lx, Ly] = [ypz − zpy, zpx − xpz]
= [ypz, zpx]− [zpy, zpx]− [ypz, xpz] + [zpy, xpz]

= y [pz, zpx] + [z, xpz] py (as the second and third commutators vanish identically)

= y [pz, z] px + x [z, pz] py

= iℏ (xpy − ypx) = iℏLz (14.7)

Similarly, we can show that

[Ly, Lz] = iℏLx , (14.8)

[Lz, Lx] = iℏLy . (14.9)

Thus, simultaneous eigenstates of Lx, Ly, Lz(or even any pair from these 3) do not exist!
This means that we can neither measure all three components precisely at once, nor any two
components simultaneously. We can only make precise measurements for any one component
of the angular momentum at a given instant.

We usually choose Lz for convenience, but this is still a matter of choice. Also, note that
these three commutation relations show that Lx, Ly and Lz form, say, a right-handed triad
(recall the right-hand corkscrew rule!) so as to remember the commutation relations as
a mnemonic: a commutation relation that involves an anti-clockwise motion on the triad
comes with a +iℏ factor in product with the third member of the triad, while a commutation
relation that involves a clockwise motion on the triad comes with a −iℏ in product with the
third member of the triad.

However, note that[
L2, Lz

]
=
[
L2
x + L2

y + L2
z, Lz

]
=
[
L2
x, Lz

]
+
[
L2
y, Lz

]
= Lx [Lx, Lz] + [Lx, Lz]Lx + Ly [Ly, Lz] + [Ly, Lz]Ly

= −iℏLxLy − iℏLyLx + iℏLyLx + iℏLxLy = 0 (14.10)

L2 is the square of the “length” of the angular momentum vector. Given that L2 and Lz
operators commute, we can define simultaneous eigenfunctions for them. In this way, we
can simultaneously measure them both precisely, and these eigenvalues are “good quantum
numbers”. Then what are the eigenvalues related to these operators? For this, we will
fall back to on the “ladder operators” formalism for angular momentum. (Recall that we
encountered such objects in our discussion of the algebraic solution for the simple harmonic
oscillator problem a few chapters ago.) By the way, it can be easily shown that [L2, Lx] = 0
and [L2, Ly] = 0, so that we could have equivalently chosen the simultaneous eigenstates for
the pair (L2, Lx) or (L

2, Ly).
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14.2 Total Angular Momentum

First, we should clarify that in any atomic system, the total angular momentum J is given
by the vector sum

J = L+ S (14.11)

L = Orbital Angular Momentum

S = Spin Angular Momentum

Here, L literally relates to the classical orbital motion of a particle while S is an internal
degree of freedom and is quite different from the classical picture of rotational motion. Spin
angular momentum arises from the internal structure of the state (i.e., Hilbert) space for
the Lorentz transformation invariant relativistic Dirac equation. Thus, a more complete
discussion of spin lies well beyond the purview of these lectures. We will, therefore, have to
be content for now with a discussion of spin as simply a source of angular momentum that,
unlike orbital angular momentum, cannot be visualised in terms of rotations in real space.

Figure 14.1: The angular momentum in quantum mechanics. Source: the internet.

Generally, in the absence of any physics that couples the L and S angular momenta, the
commutation relations given earlier for the components of L go through, as well as a similar
algebra is found for S. Thus, we may write

[Jx, Jy] = iℏJz (14.12)

[Jy, Jz] = iℏJx (14.13)

[Jz, Jx] = iℏJy (14.14)[
J2, Jα

]
= 0 for α = x, y, z (14.15)
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We are going to work here onwards with the eigenstates of J2 and Jz. For them, we define
the ladder operators as

J+ = Jx + iJy Creation (raising) operator (14.16a)

J− = Jx − iJy Annihilation (lowering) operator (14.16b)

[J+, J−] = −i [Jx, Jy] + i [Jy, Jx] = 2ℏJz . (14.16c)

Note that J†
+ = J−, J

†
− = J+ which means that J+, J− are not Hermitian, i.e., they do

not correspond to observable quantities. But they can be used to go between different
eigenfunctions (recall the ladder operators of the harmonic oscillator!).

For instance, starting with J2ψ = αψ, Jzψ = βψ, assuming J+ψ = ϕ (where ϕ is another
normalised eigenstate of J2 and Jz), let us try calculating J2ϕ, Jzϕ. Note that[

J2, J±
]
= 0 as

[
J2, Jx

]
= 0 =

[
J2, Jy

]
. (14.17)

Thus,
J2ϕ = J2 (J+ψ) = J+

(
J2ψ

)
= αJ+ψ = αϕ .

This shows that ϕ is an eigenstate of J2 with the same eigenvalue α as that of ψ, i.e., the
action of J+ on ψ does not affect the eigenvalue of J2 ! However, [Jz, J+] ̸= 0. In fact,

[Jz, J+] = [Jz, Jx + iJy]

= [Jz, Jx] + i [Jz, Jy]

= iℏJy + i (−iℏ) Jx
= ℏ (Jx + iJy) = ℏJ+ (14.18)

[Jz, J−] = ℏJ− (14.19)

Calculating Jzϕ :

Jzϕ = JzJ+ψ = J+Jzψ + ℏJ+ψ
= βJ+ψ + ℏJ+ψ
= (β + ℏ)ϕ (14.20)

This means J+ transforms ψ (with eigenvalues α, β for J2, Jz operators) into a new eigen-
function ϕ with eigenvalues α, β + ℏ. One more operation with J+ will further increase the
eigenvalue of Jz to β + 2ℏ and so on.

Can we do this indefinitely (as done in simple harmonic oscillator)? No! This is because β2

must have an upper bound that is defined in some way by α (the square of the length of the
total angular momentum vector). This is simply seen from the fact that even classically, the
z component of a vector is bounded by the magnitude of vector itself, i.e., J2

z ≤ J2.

More can be learnt about this upper bound on β by taking an eigenfunction ψmax such that

J+ψmax = 0 (14.21)
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In the same way, we can argue that there must exist a ψmin such that

J−ψmin = 0 (14.22)

First, note that we can write J2 in terms of J± and Jz as follows

J2 = J2
x + J2

y + J2
z (14.23a)

= J−J+ + J2
z + ℏJz (14.23b)

= J+J− + J2
z − ℏJz , (14.23c)

where we have used the fact that J2
x + J2

y = J+J− − ℏJz = J−J+ + ℏJz .

Eqs. 14.23 are obtained by using the definition and commutation relations of J±. Now, we
can compute the values of α and β as follows

J2ψmax =
(
J−J+ + J2

z + ℏJz
)
ψmax

αψmax = 0 + β2
maxψmax + ℏβmaxψmax

∴ α = β2
max + ℏβmax (14.24)

Similarly, we find by operating J2ψmin

α = β2
min − ℏβmin (14.25)

From Eqs. 14.24, 14.25,

β2
min − ℏβmin = β2

max + ℏβmax
β2
max − β2

min + ℏ (βmax + βmin) = 0

(βmax − βmin + ℏ) (βmax + βmin) = 0

=⇒ βmax = −βmin (14.26)

as the other solution βmax = βmin − ℏ does not make physical sense. Also, from the idea of
ladder operators for Jz,

βmax = βmin + nℏ, n ∈ Z (14.27)

∴ βmax =
nℏ
2

(14.28)

The first line of the above equation is simply telling us that applying the raising operator
an integer n number of times should take us from the state ψmin to the state ψmax. Now,
defining j = n/2 , n ∈ Z, from Eq. 14.24, we obtain

α = ℏ2j (j + 1) , (14.29)

β = mjℏ, mj = −j,−j + 1, · · · , j − 1, j (14.30)

Therefore, we can write

J2ψ = ℏ2j (j + 1)ψ , where j =
n

2
, n ∈ Z , (14.31)

Jzψ = mjℏψ , where mj = −j,−j + 1, · · · , j − 1, j . (14.32)
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These relations are visualised in Fig.14.2 below. It is important to note that the integer
parameter n has not been determined as yet. It turns out that nature appears to divide the
odd valued integers and even valued integers for n into the world of Fermions (all matter
particles) and Bosons (all force particles) respectively!

Figure 14.2: The angular momentum in quantum mechanics for the case of n = 6, l = 3
(left) and n = 4, l = 2 (right). Source: the internet.

Finally, note that for J±ψj,mj
= Cj,mj

ψj,mj±1, the constant Cj,mj
can be obtained by using

the relations eq.(14.23b) and eq.(14.23c)

Cj,mj
= ℏ
√
j(j + 1)−mj(mj ± 1) . (14.33)
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Chapter 15

Orbital Angular Momentum
Eigenstates

As rotational symmetry in three dimensions is best visualised in spherical polar coordinates,
we write the TISE in that coordinate system to obtain the eigenfunctions and eigenvalues of
orbital angular momentum.

First, recall that the gradient in spherical coordinates is given by

∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ
(15.1)

! Revise the transformation of the gradient from Cartesian to spherical coordinates.

Figure 15.1: Spherical Coordinates
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Then one can compute the components of the orbital angular momentum Lx, Ly, Lz

Lx = iℏ
(
sinϕ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
, (15.2)

Ly = iℏ
(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
, (15.3)

Lz = −iℏ
∂

∂ϕ
. (15.4)

! Work these out for yourself carefully, following the definitions for the components of L⃗

given in the previous chapter.

This gives us the norm of, and the raising and lowering operators for, the orbital angular
momentum as

L2 = −ℏ2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
, (15.5)

L± = ℏe±iϕ
(
± ∂

∂θ
+ i cot

∂

∂ϕ

)
. (15.6)

Thus, from our ladder operator analysis presented in the last chapter, we know that we can
define eigenfunctions that are labelled by two good quantum l, m such that they satisfy the
following eigenvalue equations

L2ψlm (θ, ϕ) = ℏ2l (l + 1)ψlm (θ, ϕ) , (15.7a)

Lzψlm (θ, ϕ) = mℏψlm (θ, ϕ) . (15.7b)

This can be written as[
1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
ψlm = −l (l + 1)ψlm , (15.8)

∂

∂ϕ
ψlm = imψlm . (15.9)

The above prompts us to try the following trial solution using separation of variables:
ψlm (θ, ϕ) = Θ (θ) Φ (ϕ).

From eq.(15.9), it is easily seen that

Φ (ϕ) = eimϕ (15.10)

! Verify this by plugging it into eq.(15.9). Importantly, the solution for Φ(ϕ) is simply a

phase that can only be known modulo 2π. This means that since ϕ is an angular variable,
the continuity of ψlm demands

Φ (ϕ+ 2π) = Φ (ϕ) (Periodic Boundary Condition) (15.11)

i.e., eim2π = 1 =⇒ m ∈ Z (15.12)

108



! Note how the imposition of periodic boundary conditions leads immediately to the

quantisation of the quantum number m. Further, it indicates that the orbital angular mo-

mentum orbits shown in Fig.14.2 must have a quantised period (m) for the matter waves.
Recall that this was the assumption made by Bohr in formulating his solution to the Hydro-
gen atom problem.

From eq.(14.24), we know that l = 0, 1, 2, · · ·. Then, putting eq.(15.10) in qq.(15.8) gives
the “Legendre” differential equation[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− m2

sin2 θ
+ l (l + 1)

]
Θ(θ) = 0 . (15.13)

The solutions to the above Legendre differential equation are the well-known Legendre
polynomials. In this way, we find that the ψlm (θ, ϕ) are the spherical harmonics Ylm (θ, ϕ):

ψlm (θ, ϕ) = Ylm (θ, ϕ) = (−1)(m+|m|)/2
[
2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2
× eimϕ × Pl|m| (cos θ) , (15.14)

where the Plm (ξ) (m > 0) are the Legendre functions (given below in eq.(15.15)) in terms
of Legendre polynomials (given below in eq.(15.16)).

Legendre Functions: Plm (ξ) =
(
1− ξ2

)m/2 dm

dξm
Pl (ξ) , (ξ = cos θ) (15.15)

Legendre Polynomials: Pl (ξ) =
1

2ll!

dl

dξl
(
ξ2 − 1

)l
. (15.16)

The Pl (ξ) are l
th order polynomials in ξ; the Plm (ξ) are thus (l −m)th order polynomials in

ξ, and are multiplied by ξm. Further, the Plm (ξ) have (l −m) nodes in −1 < ξ < 1. Some
of the Legendre polynomials are given by

P0 = 1 ,

P1 = ξ ,

P2 =
1

2

(
3ξ2 − 1

)
,

P3 =
1

2

(
5ξ3 − 3ξ

)
, and so on.

Thus, we see that the Pl(ξ) are either odd order or even order polynomials in ξ. Recall that
we saw a similar phenomenon for the Hermite polynomial solutions for the wavefunctions of
the harmonic oscillator problem as well. While the mathematical details given in the rest of
this chapter are not essential for proceeding towards the Hydrogen atom problem, they are
worth knowing for the overall completeness in our understanding of the angular momentum
problem.
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The Legendre polynomials satisfy the following recursion relation

(l + 1)Pl+1 (ξ) = (2l + 1) ξPl (ξ)− lPl−1 (ξ) , (15.17)(
1− ξ2

) dPl
dξ

= l (Pl−1 − ξPl) . (15.18)

The associated Legendre functions satisfy

Legendre differential equation :

[(
1− ξ2

) d2
dξ2
− 2ξ

d

dξ
+ l (l + 1)− m2

(1− ξ2)

]
Plm (ξ) = 0

(15.19)

Parity transformation : Plm (−ξ) = (−1)l+m Plm (ξ) (15.20)

Orthogonality relation :

−1∫
−1

Plm (ξ)Pl′m (ξ) dξ =
2

(2l + 1)

(l −m)!

(l +m)!
δll′ (15.21)

In particular, Pl0 (ξ) = Pl (ξ) and Pll (ξ) = (2l − 1)!! (1− ξ2)1/2, where (2l − 1)!! = (2l − 1) (2l − 3) · · · 1.

From these relations, we get the following properties of the spherical harmonics Ylm (θ, ϕ)

Orthogonality relation :

2π∫
0

dϕ

π∫
0

dθ sin θ Y ∗
lm (θ, ϕ)Yl′m′ (θ, ϕ) = δll′δmm′ , (15.22)

Completeness relation :
∞∑
l=0

l∑
m=−l

Ylm (θ, ϕ)Y ∗
lm (θ′, ϕ′) = (sin θ)−1 δ (θ − θ′) δ (ϕ− ϕ′) .

(15.23)

Eqs.(15.22) and (15.23) prove the orthogonality and completeness of the spherical harmonics
Ylm (θ, ϕ), thus making them suitable candidate for an eigenbasis. Eq.(15.24) below is called
the addition theorem, which is a generalization of cos (θ − θ′) = cos θ′ cos θ + sin θ′ sin θ:

l∑
m=−l

Ylm (θ, ϕ)Y ∗
lm (θ′, ϕ′) =

(2l + 1)

4π
Pl (cos θ) , (15.24)

Yl,−m (θ, ϕ) = (−1)m Y ∗
lm (θ, ϕ) . (15.25)

For the unit vectors â, b̂, it can be shown that

Pl

(
â · b̂

)
=

4π

2l + 1

l∑
m=−l

Y ∗
lm (θ′, ϕ′)Ylm (θ, ϕ) ,

such that for x̂ = ŷ =⇒
l∑

m=−l

Y ∗
lm (θ′, ϕ′)Ylm (θ, ϕ) =

2l + 1

4π
. (15.26)
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Eq.(15.26) is a generalization of cos2 θ + sin2 θ = 1 to 2D. Some of the spherical harmonics
are given by

Y00 =
1√
4π

,

Y10 =

√
3

4π
cos θ ,

Y11 = −
√

3

8π
sin θeiϕ ,

Y20 =

√
5

16π

(
3 cos2 θ − 1

)
,

Y21 = −
√

15

8π
sin θ cos θeiϕ ,

Y22 =

√
15

32π
sin2 θei2ϕ , and so on.

Under the action of parity operator Pψ (r) = ψ (−r),

PYlm (θ, ϕ) = Ylm (π − θ, π + ϕ)

= eimπ (−1)l+|m| Ylm (θ, ϕ) , (15.27)

∴ PYlm (θ, ϕ) = (−1)l Ylm (θ, ϕ) . (15.28)

This means that Ylm is even for even l and odd for odd l. Figure 15.2 shows the spherical
harmonics Ylm (θ, ϕ) for l = 0, 1, 2, 3.

States with l = 0 : s-orbitals

l = 1 : p-orbitals

l = 2 : d-orbitals

l = 3 : f-orbitals

and so on ...

Below, in Fig.15.2, we see plots of the first few Spherical Harmonics. You may well recall
having seen these somewhere as the orbitals for the Hydrogen atom.
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Figure 15.2: Spherical Harmonics
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Chapter 16

Central Potential Problem

For a central force problem, V (r) = V (r) i.e., the potential only depends on the radial
distance. Thus, the TISE will then be

H =
1

2m
p⃗2 + V (r) (16.1)

Now as L = r × p such that Lk = ϵijkxipk, the norm of the orbital angular momentum L2

will be (r = x1x̂+ x2ŷ + x3ẑ)

L2 =
∑

k=x,y,z

L2
k = (ϵijkxipj) (ϵmnkxmpn)

= ϵijkϵmnkxipjxmpn

= (δimδjn − δinδjm)xipjxmpn
= xipjxipj − xipjxjpi
= xi (xipj − iℏδij) pj − xipj (pixj + iℏδij)
= x2i p

2
j − iℏxipi − xipipjxj − iℏxipi

= x2i p
2
j − 2iℏxipi − xipi (xjpj − iℏ)

= x2i p
2
j − xipixjpj − iℏxipi

= r2p2 − (r · p)2 − iℏr · p (16.2)

where ϵijk is the totally anti-symmetric tensor of rank 3 (i, j, k can each take the values
1, 2, 3). ϵijk has the following properties: (i) its value is zero for any two components being
the same, all ϵijk = 1 for (i, j, k) arranged (say) in a clockwise manner and ϵjik = −ϵijk = . . .
(i.e., the value is −1 for any two indices being swapped).
Further, the product ϵijkϵmnk = (δimδjn − δinδjm) . Note that following the Eintein
convention, we are summing over all repeated indices.
Finally, we have used the identity (xipj − pjxi) = iℏδij. The last term on the RHS of Eq.
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16.2 arises purely due to the non-commutativity of r, p. For r = rêr as p̂ = iℏ∇

∇ = êr
∂

∂r
+ êθ

∂

∂θ
+ êϕ

1

r sin θ

∂

∂ϕ
(16.3)

=⇒ r · p = −iℏr ·∇ = −iℏr ∂
∂r

From Eq. 16.2,

p̂2 =
L2

r2
− ℏ2

r2

((
r
∂

∂r

)2

+ r
∂

∂r

)

=
L2

r2
− ℏ2

r

∂

∂r
− ℏ2

r

∂

∂r

(
r
∂

∂r

)
=
L2

r2
− ℏ2

(
2

r

∂

∂r
+

∂2

∂r2

)
(16.4)

p̂2 =
L2

r2
+ p̂2r (16.5)

where p̂r is the radial momentum given by

p̂r = −i
ℏ
r

∂

∂r
· r = −iℏ

(
1

r
+

∂

∂r

)
(16.6)

[r, p̂r] =

[
r,−iℏ

(
∂

∂r
+

1

r

)]
= iℏr

∂

∂r
− iℏ+ iℏ

(
∂

∂r
+

1

r

)
r

= iℏ (16.7)

(16.8)

Note that you have to be a little careful in carrying out the commutation relation here, so as
not to miss out any terms. The best way to do this is to explicitly put in a wavefunction ψ
on the right of the commutator, carry out the entire calculation, and remove it at the end.
Verify that the operator p̂r is Hermitian.
Putting Eq. 16.4 in Eq. 16.1,[

− ℏ2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

1

2mr2
L2 + V (r)

]
ψ (r, θ, ϕ) = Eψ (r, θ, ϕ) (16.9)

For the case of a central potential, V (r) has rotational symmetry. Then, [H,L2] = 0, which
means that ψ (r, θ, ϕ) is a simultaneous eigenvalue of H, L2 and Lz. So, we can take ψ (r, θ, ϕ)
as

ψ (r, θ, ϕ) = R (r)Ylm (θ, ϕ) where L2Ylm (θ, ϕ) = l(l + 1)ℏ2Ylm (θ, ϕ) , (16.10)

⇒
[
− ℏ2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

ℏ2

2mr2
l (l + 1) + V (r)

]
R (r) = ER (r) (16.11)
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Taking R (r) = u (r) /r ,[
− ℏ2

2m

∂2

∂r2
+

ℏ2

2mr2
l (l + 1) + V (r)

]
u (r) = Eu (r) (16.12)

=⇒ Veff (r) = V (r) +
ℏ2

2mr2
l (l + 1) (16.13)

Figure 16.1: Effective potential for an atom with Coulomb and Centripetal potentials.

The plot in Fig.16.1 shows the effective potential Veff for the Coulomb potential VCoulomb(r) ∝
−1/r and the centripetal potential VCentripetal = l(l + 1)/2mr2.

The normalizability condition of ψ tells us that∫
d3x |ψ|2 = constant×

∞∫
0

drr2
|u (r)|2

r2
<∞

=⇒
∞∫
0

dr |u (r)|2 <∞

=⇒ lim
r→∞
|u (r)| ≤ a

r1/2+ϵ
where a = constant, ϵ > 0

where the finite constant arise from the angular integrals
∫
dθ
∫
dϕsin2θ|Ylm (θ, ϕ) |2 . Thus,

u (r) must fall away faster than 1/
√
r as r →∞. Also, for the case of ϵ = 0, you can easily

see a logarithmic divergence of the integral with r in the limit of r →∞.
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In the limit of r → 0, we must have u(r → 0)→ 0 faster than r → 0 for the overall stability
of the atomic system. Certainly, this is easily seen for l ̸= 0 due to the overall repulsive
nature of Veff (r → 0). As

u (0) = 0 in the limit r → 0 , (16.14)

we must have (for l = 0) a hard-wall boundary condition at r = 0

Veff (r) =

{
V (r) r > 0 ,

∞ r = 0 .
(16.15)

Do bound states exist in 3D for the case of the Coulomb potential problem?
Having set the stage for solving the Hydrogen atom problem, we now turn to this task in
the next chapter.
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Chapter 17

The Hydrogen Atom

For the Coulomb potential V (r) = −e2/4πϵ0r (note: a central potential!), let us first consider
the two-body problem of the electron orbiting around the positively charged nucleus. For a
classical system of two bodies of masses m1, m2, at positions r1, r2, the problem can always
be decomposed into center of mass and relative variables. The center of mass variables are
given by

rCM =
m1r1 +m2r2
m1 +m2

,

pCM = p1 + p2 ,

M = m1 +m2 .

The relative variables are given by

r = r1 − r2 , (17.1)

p = µ (v1 − v2) , Reduced mass µ =

[
1

m1

+
1

m2

]−1

=
m1m2

m1 +m2

,

=
m1m2

m1 +m2

(
p1

m1

− p2

m2

)
,

=
m2p1 −m1p2

m1 +m2

. (17.2)

We now turn to the quantum mechanical case, where the position and momenta variables
have been promoted to operators. Thus, denoting the particle index by µ, ν and the Cartesian
components by i, j, we can write

[rνi, pµj] = iℏδijδµν , (17.3)

=⇒
[
(rCM)i , (pCM)j

]
= iℏδij = [ri, pj] . (17.4)
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Thus, we can simplify the TISE for the 2-body system of the H-atom using

pCM = −iℏ∇CM ,

pr = −iℏ∇r ,

p21
2m1

+
p22
2m2

=
p2CM
M

+
p2

2µ
,

=⇒ HΨ(rCM , r) =

[
p2CM
M

+
p2

2µ
+ V (r)

]
Ψ(rCM , r) = EtotalΨ(rCM , r) . (17.5)

Now, given that there is no (external) potential experienced by the the 2-body system as a
whole (i.e., there is no Vext(rCM)), the center of mass degree of freedom behaves effectively
like a free particle, such that we can decompose the total wavefunction into Ψ(rCM , r) =
ϕ(rCM)ψr such that

ECM =
ℏ2k2CM
2M

, ϕ (rCM) = eikCM ·rCM ,[
p2

2µ
+ V (r)

]
ψ (r) = Erelψ (r) where Erel = Etotal −

ℏ2k2CM
2M

, (17.6)

where me = 9.109× 10−31 kg, mp = 1.672× 10−27 kg and µ = memp/M = 0.9995me for the
H-atom problem. We have already studied the case of a TISE in the radial coordinate for
a general central potential in the previous chapter. Thus, the equivalent 1D TISE for the
H-atom is [

− ℏ2

2µ

d2

dr2
+

ℏ2l (l + 1)

2µr2
− 1

4πϵ0

e2

r

]
u (r) = Erelu (r) . (17.7)

Note that for l = 0,

Veff (r) =
ℏ2l (l + 1)

2µr2
− 1

4πϵ0

e2

r
→ − 1

4πϵ0

e2

r
< 0 .

Given that the Coulomb potential is overall confining, any bound state (if at all possible!)
must exist for Erel < 0 at l = 0. Thus, let us take ε = −Erel and simplify the TISE to

d2u (r)

dr2
+

2µe2

4πϵ0ℏ2
u (r)

r
− l (l + 1)

r2
u (r) =

2µ

ℏ2
εu (r) where ε > 0 . (17.8)

At r →∞ limit, we can drop the Veff term and take the approximate form u(r) ∼ uapp(r)

d2uapp
dr2

=
2µ

ℏ2
εuapp

=⇒ uapp (r) ∝ e
−
√

2µε

ℏ2 r , (17.9)

where we have thrown away the possibile solution of uapp (r) ∝ e

√
2µε

ℏ2 r on grounds of nor-
malisability (as it diverges in the limit of r →∞). With this in mind, we consider the trial
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solution

u (r) = v (r) e
−
√

2µε

ℏ2 r , (17.10)

v (r) =
∞∑
p=1

Apr
p . (17.11)

Here, Ap are constants, and A0 = 0 (from the constraint that u(r → 0) → 0, eq.16.14).
Substituting Eq. 17.10 in Eq. 17.8 we get

d2v (r)

dr2
− 2
√
2µε

ℏ
dv (r)

dr
+

2µe2

4πϵ0ℏ2
v (r)

r
− l (l + 1)

r2
v (r) = 0 (17.12)

Substituting Eq. 17.11 in Eq. 17.12 in seeking the Frobenius power-series solution and
equating the coefficient of rp to be zero, we obtain the recursion relation

[p (p+ 1)− l (l + 1)]Ap+1 =

[
2p
√
2µε

ℏ
− 2µe2

ℏ24πϵ0

]
Ap . (17.13)

For p = l, Ap = 0 =⇒ Ap−1 = 0 = Ap−2 = Ap−3 = · · ·. Thus, the only non-zero coefficients
have p > l. Also, as r →∞, u (r)→ 0 (for a normalisable solution to the TISE). This means
that the power series v (r) must terminate at a finite p(> l), so that the exponential part
can dominate as r →∞.

Thus, for some p = n > l, Ap+1 = 0

=⇒ 2n
√
2µε

ℏ
=

2µe2

ℏ24πϵ0

∴ En
rel = −ε = −

µe4

(4πϵ0)
2 2ℏ2n2

(17.14)

= −13.6

n2
eV , n ≥ l + 1 (17.15)

R (r) =
v (r)

r
e−

√
2µε
ℏ r (17.16)

= Rnl (r)

Bohr

Thus, after such a long calculation, we do get back the Bohr formula (eq.(2.39))! The
various Rnl (r) can be found from getting various Ap from Eq. 17.13 , and in terms of the
characteristic lengthscale for the atom (the Bohr radius a0):

R10 (r) =

(
1

a0

)3/2

2e−r/a0 ,

R20 (r) =

(
1

2a0

)3/2

2

(
1− r

2a0

)
e−r/2a0 ,

R21 (r) =

(
1

2a0

)3/2
1√
3

(
r

a0

)
e−r/2a0 ,
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and so on. Here, a0 is the Bohr radius given by

a0 =
4πϵ0ℏ2

µe2
= 5.3× 10−11m , En

rel = −
ℏ2

2µn2a20
,

and the full wavefunction of the H-atom is given by

ψnlm (r, θ, ϕ) = Rnl (r)Ylm (θ, ϕ) (17.17)

where the good quantum numbers are given by

n = 1, 2, 3, · · · (Principal quantum number) ,

l = 0, 1, · · · , n− 1 (Orbital quantum number) , and

m = −l,−l + 1, · · · , l − 1, l (Magnetic quantum number) .

While Rnl (r) is dependent on both n & l, the energy En
rel is dependent on n alone. There

must, therefore, be denegeracies for all the levels with different values of l and m that corre-
spond to a given value of n. This degeneracy is, however, true only for the Coulomb central
potential, and reflects a case of an “accidental” degeneracy. Quantifying this degeneracy,
any n has (n − 1) possible values for l, and each l has 2l + 1 possibles values of m. Thus,
the total degeneracy for En will be

Total degeneracy of En
rel =

n−1∑
l=0

(2l + 1) ,

= 2
n (n− 1)

2
+ n ,

= n2 . (17.18)

Taking account of the spin internal degree of freedom (with its double degeneracy), the
total degeneracy for En

rel will be 2n
2. While the energy levels thus obtained match the Bohr

model exactly, our earlier understanding of quantised electron orbits with a fixed trajectory
is replaced by a probability distribution P (r) obtained from ψnlm (r, θ, ϕ)

P (r) =

r∫
0

drr2
π∫

0

dθ sin θ

2π∫
0

dϕ |ψnlm (r, θ, ϕ)|2 , limr→∞P (r) = 1 . (17.19)

We can also define radial probability density Pnl (r) such that it gives the probability of
finding the electron in a small interval dr at a distance r

Pnlm (r) =

π∫
0

2π∫
0

r2 sin θdϕdθ |ψnlm (r, θ, ϕ)|2 , (17.20)

= r2 |Rnl (r)|2
π∫

0

2π∫
0

|Ylm (θ, ϕ)|2 dϕdθ ,

= r2 |Rnl (r)|2 × Ilm (17.21)
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where Ilm =
π∫
0

2π∫
0

|Ylm (θ, ϕ)|2 dϕdθ.

∴ Pnlm (r) = r2 |Rnl (r)|2 × Ilm , (17.22)

and P (r) =

r∫
0

Pnlm (r) dr . (17.23)

Some plots of the Pnlm(r) (as a function of r/a0) are shown in Fig.17.1 below. The classical
picture of orbits can (very roughly speaking) be understood as tracking the peaks of the
radial probability density Pnlm(r). Also, we display once again the solutions of the angular
momentum problem in Fig.17.2 in order to visualise the “orbitals” of the Hydrogen atom.

Figure 17.1: Radial Probability density function
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Figure 17.2: Spherical Harmonics
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Chapter 18

Spin Angular Momentum

18.1 Evidence for spin

18.1.1 The Zeeman Effect

For a Hydrogen atom in an external B−field aligned along the z-axis:

H = H0 −
e

2m
B⃗ · L⃗eff = H0 −

e

2m
BLzeff (18.1)

where B⃗ = Bẑ is the magnetic field vector, H0 is the Hamiltonian of the Hydrogen atom and
L⃗eff is the effective angular momentum of the H-atom observed when placed in the external
B-field. The Schrödinger equation can then be written as

HΨnlm =

(
−13.6eV

n2
− eℏB

2m
mleff

)
Ψnlm =⇒ Enlm = −13.6eV

n2
− ℏωLmleff , (18.2)

where ωL = eB
2m

is the Larmor frequency. We see that the coupling with the magnetic field
removes (“lifts”) the 2l + 1-fold degeneracy of the levels which had energy En = −13.6

n2 eV .
The splitting is given by ℏωL = eℏ

2m
B, for ∆mleff = 1. The coupling to the external magnetic

field can also be written in terms of an effective magnetic moment µ⃗L

H = µ⃗L · B⃗ (18.3)

where µ⃗L = −glµB
ℏ L⃗ and µb =

eℏ
2m

= 5.788 × 10−5eV/T is the Bohr magneton. For orbital
angular momentum, the Lande g factor is gl = 1.

However, in the H-atom, the splitting is different and an even number of levels is observed,
as if Leff ∈ n

2
and n ∈ odd integer. Further, n = 1 for the H-atom with the electron in the

l = 0 state, such that Leff =
1
2
. Also, the splitting is different for different levels. This points

towards the existence of another source of angular momentum other than the orbital angular
momentum we learnt of earlier. In offering an explanation for this finding, Uhlenbeck and
Goudsmit (1925) called it spin angular momemtum. It’s origin was learnt a little later from
Dirac’s theory for relativistic quantum mechanics (1929).
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18.1.2 The Stern-Gerlach Experiment

Figure 18.1: Splitting of the beam of particles into two patches when subjected to a non-
uniform magnetic field

Here, an atomic beam traverses an inhomogeneous B−field such that there is a force on the
atom (see fig. 18.1), given by

F⃗ ∝ ∇⃗
(
µ⃗ · B⃗(r⃗)

)
≊ µz

∂Bz(r)

∂z
êz (18.4)

From the earlier, we would naively expect the beam to be split into an odd number (2l+1) of
beams. Stern and Gerlach, in that experiment, took silver atoms having a single 5s electron
in the outermost shell. The only possible configuration, then, was l = 0. This means there
should be no splitting.

The result is that the beam split into two beams! This suggests that this outermost 5s
electron possesses an internal angular momentum, called spin, with the spin magnetic mo-
ment given by

µ⃗S = −gSµB
ℏ

S⃗ (18.5)

where S⃗ = Sxx̂ + Syŷ + Sz ẑ is the spin angular momentum vector (a quantum mechanical
operator!) and its z-component has eigenvalues Sz = ±1

2
. The force on the electron is thus

given by

F⃗ ∝ ẑ
∂Bz

∂z

(
−gSµB

ℏ
Sz

)
(18.6)
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and the value of the corresponding Lande g-factor gS is 2.0023193. The relativistic theory
of Dirac gives gS = 2, but Quantum Electrodynamics (QED) gives corrections to this.

A small historical aside. Uhlenbeck and Goudsmit were graduate students of Ehrenfest, and
working for their PhDs in Leiden (Netherlands). In 1925, their advisor Ehrenfest communi-
cated their proposal for spin angular momentum to the journal Naturwissenschaften. In the
meanwhile, unknown to them, Ehrenfest had a discussion with Lorentz on the interesting
(supposedly “very witty”) idea of his young students. Lorentz was critical, pointing out that
their idea of a “spinning electron” was incompatible with classical electrodynamics. Upon
telling his students the criticism offered by Lorentz, they requested Ehrenfest not to submit
their work. Enhrenfest replied that he had already done so, and that they were “both young
enough to be able to afford a stupidity”! Thanks to Dirac’s explanation of spin, things did
not turn out quite so badly for them after all.

18.2 Eigenstates and Eigenvalues of the Spin Opera-

tors

The formalism developed earlier for orbital angular momentum L⃗ can be carried over to the
case of spin angular momentum. For example, we have the following algebra:

[Si, Sj] = iℏϵijkSk, for i, j, k ∈ {x, y, z} (18.7)

In terms of the components, these relations look like

[Sx, Sy] = iℏSz, [Sy, Sz] = iℏSx. [Sz, Sx] = iℏSy (18.8)

From these commutation relations, we can write down the simultaneous eigenstates |s,m⟩
of S2 and Sz such that

S2 |s,ms⟩ = s(s+ 1)ℏ2 |s,ms⟩
Sz |s,ms⟩ = mℏ |s,ms⟩ .

(18.9)

At this point, we need a brief interlude on the states |s,m⟩ given above. Following Dirac, the
|.⟩, referred to as a ket, denotes a vector in the space of all states in the Hilbert space of the
quantum mechanical system. It is an abstract object, and it differs from the wavefunction ψ
in that the latter is a representation of an abstract ket. For example, the ket corresponding
to the ground state of the simple harmonic oscillator can be written as |n = 0⟩ (where n is the
good quantum number labelling the eigenspectrum, and is the eigenvalue of the operator a†a
we studied in the chapter on the harmonic oscialltor), and its corresponding wavefunction
in the position representation is

ψn=0(x) = ⟨x|n = 0⟩ (18.10)

where ⟨x| refers to the basis states comprising all functions defined in terms of the real-
space coordinate x (to be discussed below), ⟨|⟩ refers to a projection of the state |⟩ onto the
state ⟨| called the Inner product (also discussed below), and ψ(x) is the familiar real-space
representation of the state we are familiar with.
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Similarly, the ⟨.|, referred to as a bra, is a member of the linear vector space dual to that
of the kets. They are defined by introducing the notion of an inner product, and the bras
are then linear maps that map the space of kets to that of the complex numbers via inner
products. In other words, a bra is an object that when acted on the ket gives a complex
number:

⟨a| : |b⟩ → C (18.11)

The inner product is a generalisation of the scalar product we are familiar with from our
studies of (real-valued) vectors in Cartesian space.

Further, in keeping with the example given above for the ket corresponding to the harmonic
oscillator ground state and its wavefunction written in the position representation, the same
can be constructed for the bra as well

ψ∗
n=0(x) = ⟨n = 0|x⟩ . (18.12)

Returning to the spin problem, along with the spin operators along the three directions, we
also define the spin creation and annihilation operators,

S± = Sx ± iSy , S†
+ = S− , S− = S†

+ . (18.13)

Their action on the simultaneous eigenstates can be shown to give (as shown in eq.(14.33)
earlier)

S± |s,ms⟩ = ℏ
√
s(s+ 1)−ms(ms ± 1) |s,ms ± 1⟩ (18.14)

18.3 Matrix Representation of Spin

While the eigenstates of the orbital angular momentum can be written as functions of position
(for eq. Ylm(θ, ϕ)), the eigenstates of the spin angular momentum cannot. Instead, we need
another way to represent these internal degrees of freedom. We first consider the simplest
case of S = 1

2
. As observed from, e.g., the Stern-Gerlach experiment, ms can then take just

two values, ±1
2
. Sz thus has two eigenstates, which we label |↑⟩ and |↓⟩, such that

Sz |↑⟩ =
ℏ
2
|↑⟩ , S2 |↑⟩ = s(s+ 1)ℏ2 |↑⟩ = 3ℏ2

4
|↑⟩

Sz |↓⟩ = −
ℏ
2
|↓⟩ , S2 |↓⟩ = s(s+ 1)ℏ2 |↑⟩ = 3ℏ2

4
|↓⟩

(18.15)

Since we know that eigenstates of a Hermitian operator are orthogonal and they span the
entire Hilbert space, we can choose any two orthogonal vectors in the 2-dimensional Hilbert
space of the spin-half to represent these two eigenstates. For convenience, we choose the
simplest vectors (also known as spinors)

|↑⟩ ≡
∣∣∣∣s = 1

2
,ms =

1

2

〉
=

(
1
0

)
, |↓⟩ ≡

∣∣∣∣s = 1

2
,ms = −

1

2

〉
=

(
0
1

)
, (18.16)

⟨↑| ≡
〈
s =

1

2
,ms =

1

2

∣∣∣∣ = (1 0) , ⟨↓| ≡
〈
s =

1

2
,ms = −

1

2

∣∣∣∣ = (0 1) . (18.17)
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The two vectors are of course orthogonal, as required, and moreover, orthonormal.

⟨↑ | ↓⟩ =
(
1 0

)(0
1

)
= 0

⟨↓ | ↓⟩ =
(
0 1

)(0
1

)
= 1

⟨↑ | ↑⟩ =
(
1 0

)(1
0

)
= 1

(18.18)

While we will focus on s = 1
2
, this representation can be easily extended to s = 1:

|s = 1,ms = 1⟩ =

1
0
0

 , |s = 1,ms = 0⟩ =

0
1
0

 , |s = 1,ms = −1⟩ =

0
0
1

 (18.19)

Combing back to s = 1
2
, since the operators Si act on these two-component vectors, they

themselves must be 2 × 2 matrices. We can construct them by simply calculating the 4
matrix elements.

⟨↑ |Sz| ↑⟩ =
ℏ
2

⟨↑ |Sz| ↓⟩ = 0 = ⟨↓ |Sz| ↑⟩

⟨↓ |Sz| ↓⟩ = −
ℏ
2

(18.20)

We can thus write

Sz =
ℏ
2

(
⟨↑ |Sz| ↑⟩ ⟨↑ |Sz| ↓⟩
⟨↓ |Sz| ↑⟩ ⟨↓ |Sz| ↓⟩

)
=

ℏ
2

(
1 0
0 −1

)
(18.21)

By definition, the states |↑⟩ and |↓⟩ are eigenstates of Sz with ms =
1
2
and ms = −1

2
respec-

tively.

We will next find the matrices S±. From their operation, we know that S± increases/decreases
the eigenvalue ms. From the theory of angular momentum, we know that ms can extend
from −s to s. For spin-half, the highest value is 1

2
, which is the state |↑⟩. This implies

that there is no state with higher ms, and S+ should give 0 when acting on the state |↑⟩.
Similarly, since |↓⟩ has the lowest value of ms for a spin-half, S− should give 0 when acting
on it.

S+ |↑⟩ = 0 = S− |↓⟩ (18.22)

To find the other actions, we recall eq. 18.14.

S+ |↓⟩ = ℏ |↑⟩
S− |↑⟩ = ℏ |↓⟩

(18.23)

These four equations are sufficient to write down all the matrix elements.

⟨↑|S+ |↑⟩ = ⟨↓|S+ |↓⟩ = ⟨↑|S− |↑⟩ = ⟨↓|S− |↓⟩ = 0

⟨↓|S+ |↑⟩ = ⟨↑|S− |↓⟩ = 0

⟨↑|S+ |↓⟩ = ⟨↓|S− |↑⟩ = ℏ
(18.24)
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We can now construct the matrices.

S+ =
ℏ
2

(
⟨↑ |S+| ↑⟩ ⟨↑ |S+| ↓⟩
⟨↓ |S+| ↑⟩ ⟨↓ |S+| ↓⟩

)
= ℏ

(
0 1
0 0

)
,

S− =
ℏ
2

(
⟨↑ |S−| ↑⟩ ⟨↑ |S−| ↓⟩
⟨↓ |S−| ↑⟩ ⟨↓ |S−| ↓⟩

)
= ℏ

(
0 0
1 0

)
.

(18.25)

Using the relations

Sx =
1

2
(S+ + S−) ,

Sy =
1

2i
(S+ − S−) ,

(18.26)

we can construct the Sx and Sy matrices.

Sx =
ℏ
2

(
⟨↑ |Sx| ↑⟩ ⟨↑ |Sx| ↓⟩
⟨↓ |Sx| ↑⟩ ⟨↓ |Sx| ↓⟩

)
=

ℏ
2

(
0 1
1 0

)
,

Sy =
ℏ
2

(
⟨↑ |Sy| ↑⟩ ⟨↑ |Sy| ↓⟩
⟨↓ |Sy| ↑⟩ ⟨↓ |Sy| ↓⟩

)
=

ℏ
2

(
0 −i
i 0

)
.

(18.27)

The three spin operators can be written as Si =
ℏ
2
σi, where σi are the Pauli spin matrices.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(18.28)

18.4 Properties of Pauli matrices

The Pauli matrices satisfy the following identities.

� σ2
x = I = σ2

y = σ2
z , I =

(
1 0
0 1

)
� [σx, σy] = 2iσz, and its cyclic permutations

� {σx, σy} = σxσy + σyσx = 0, and its cyclic permutations

� the previous two points imply σxσy = −σyσx = iσz

� σxσyσz = iI

� Trace (σx) = Trace (σy) = Trace (σz) = 0 −→ traceless matrices

� Det (σx) = Det (σy) = Det (σz) = −1

The first three properties can be combined into

σiσj = δij + iϵijkσk (18.29)

Often we will talk about a vector of Pauli matrices. That is defined as

σ⃗ = σxx̂+ σyŷ + σz ẑ (18.30)
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For arbitrary vector operators a⃗ =
∑

i aiî and b⃗ =
∑

i biî (i ∈ {x, y, z}) that commute with
the Pauli matrices ([ai, σj] = 0 = [bi, σj]), we have the following identity:

(σ⃗ · a⃗)
(
σ⃗ · b⃗

)
= I⃗a · b⃗+ iσ⃗ ·

(
a⃗× b⃗

)
(18.31)

Finally, it is worth noting that any arbitrary 2 × 2 matrix (say A) with complex-valued
matrix elements can be written as a linear combination the three Pauli matrices and the
2× 2 identity matrix

A = aσx + bσy + cσz + dI , (18.32)

where a, b, c, d ∈ C in general (and ∈ R in particular).

18.5 Eigenstates of Sx

We have already seen the eigenstates and eigenvalues of Sz:

|↑⟩ =
(
1
0

)
, |↓⟩ =

(
0
1

)
Sz |↑⟩ =

ℏ
2
|↑⟩ , Sz |↓⟩ = −

ℏ
2
|↓⟩

Now consider Sx and assume that it has an eigenvector(
ψ1 ψ2

)
(18.33)

with eigenvalue c:
ℏ
2

(
0 1
1 0

)
︸ ︷︷ ︸

Sx

(
ψ1

ψ2

)
= c

(
ψ1

ψ2

)
(18.34)

Solving the eigenvalue problem leads to the determinant equation:∣∣∣∣−c ℏ
2

ℏ
2

c

∣∣∣∣ = 0 =⇒ c2 −
(
ℏ
2

)2

= 0 =⇒ c = ±ℏ
2

(18.35)

So, the eigenvalues of Sx (and Sy, if you check them out!) are identical to that of Sz!
But there is no surprise in this really: there is no preferred spin direction and we have the
freedom of rotating the x-axis into the z-direction. So, why would any measurable quantity
look different?

Solving for the eigenvectors of Sx corresponding to the eigenvalues ±ℏ
2
gives

eigenvalue
ℏ
2
↔ |→⟩ = 1√

2

(
1
1

)
=

1√
2
(|↑⟩+ |↓⟩)

eigenvalue − ℏ
2
↔ |←⟩ = 1√

2

(
1
−1

)
=

1√
2
(|↑⟩ − |↓⟩)

(18.36)
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while for Sy, we get

eigenvalue
ℏ
2
↔ |↗⟩ = 1√

2

(
1
i

)
=

1√
2
(|↑⟩+ i |↓⟩)

eigenvalue − ℏ
2
↔ |↙⟩ = 1√

2

(
1
−i

)
=

1√
2
(|↑⟩ − i |↓⟩)

(18.37)

Thus, we see that a spin in the x(−x) or y(−y) directions are actually linear combinations
of states in which the spin is aligned along the z and −z directions! This counter-intuitive
finding is purely an outcome of quantum mechanics and has no classical analogue.

In fact, just to test these findings, we can run an initially unpolarised beam of H-atoms
through a succession of three Stern-Gerlach experiments with inhomogeneous B-fields along
z-direction for the first, the x-direction for the second, and the z-direction for the third, and
in the following sequence

� B-field along z-direction : the initially unpolarised beam first splits into |↑⟩ and |↓⟩
states,

� B-field along x-direction next : putting (say) |↓⟩ through second S-G gives |←⟩ and
|→⟩ state beams, and

� B-field along z-direction again : putting (say) |→⟩ through third S-G produces both
|↑⟩ and |↓⟩ beams again!

Interesting, isn’t it?

18.6 Spin Precession

Classically, a magnetic dipole µ⃗ (initially at rest) when placed in an external magnetic field

B⃗ feels a torque µ⃗ × B⃗, causing it to align with the field. If, in addition, it has an angular
momentum, the applied torque will cause the rotating body to precess about a direction
given by µ⃗× B⃗.

Figure 18.2: Left: Torque that aligns the spin along B⃗. Right: Precession of the spin about
B⃗
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What happens to a quantum mechanical spin? Consider an electron with magnetic moment
µ⃗ at rest in a magnetic field B⃗. We need to study the time evolution of the spin, using the
TDSE

H |Ψ⟩ = iℏ
∂

∂t
|Ψ⟩ (18.38)

What is the Hamiltonian H for this problem? If we assume the particle is at rest, we get

H = −µ⃗ · B⃗ (18.39)

The magnetic moment µ⃗ can be related to the spin angular momentum using µ⃗ = −2µB
ℏ S⃗.

Assuming the applied magnetic field is in the direction of ẑ, we get

H =
2µB
ℏ
Bẑ · S⃗ =

2µB
ℏ
BSz = µBBσz (18.40)

where σz = 2
ℏSz is the Pauli matrix along z direction. Since the spin angular momentum

operators belong to a two-dimensional Hilbert space, the state vector |Ψ⟩ will also have two
components

|Ψ⟩ =
(
Ψ+

Ψ−

)
. (18.41)

The TDSE becomes

µBBσz |Ψ⟩ = iℏ
∂

∂t
|Ψ⟩ =⇒ µBB

(
1 0
0 −1

)(
Ψ+

Ψ−

)
= iℏ

∂

∂t

(
Ψ+

Ψ−

)
(18.42)

Comparing the matrix elements gives

±µBBΨ± = iℏ
∂

∂t
Ψ± (18.43)

The solution of these equations are

Ψ± = A± exp

{
∓i
(
µBB

t

ℏ

)}
(18.44)

where the coefficients A± specify the initial condition: |Ψ(t = 0)⟩ =
(
A+

A−

)
. We now consider

two specific initial conditions.

18.6.1 Spin is along +z at t=0

The initial state will be

|Ψ(t = 0)⟩ =
(
1
0

)
, (18.45)

hence A+ = 1, A− = 0. Plugging these into the solutions gives Ψ+(t) = exp
{
−i
(
µBB

t
ℏ

)}
and Ψ−(t) = 0.

|Ψ(t)⟩ =
(
exp
{
−i
(
µBB

t
ℏ

)}
0

)
(18.46)
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The probability of finding the spin along +z, as a function of time, is

P (t) = |⟨↑ |Ψ(t)⟩|2 =
∣∣∣∣(1 0

)(exp{−i (µBB t
ℏ

)}
0

)∣∣∣∣2 = ∣∣∣∣exp{−i(µBB t

ℏ

)}∣∣∣∣2 = 1 (18.47)

The probability is always equal to unity, so the time evolution for this initial condition is
trivial (i.e., there is no precession of the spin).

18.6.2 Spin is along +x at t=0

|Ψ(t = 0)⟩ = 1√
2

(
1
1

)
=⇒ A± =

1√
2

(18.48)

|Ψ(t)⟩ = 1√
2

(
exp
{
−i
(
µBB

t
ℏ

)}
exp
{
i
(
µBB

t
ℏ

)} ) =
1√
2

(
e−iω

t
2

eiω
t
2

)
(18.49)

where ω ≡ 2µBB
ℏ is the Larmor frequency. We will now look at the state |Ψ(t)⟩ for various

values of t > 0.

At a later time t = 2π
ω

(i.e., a full time period),

|Ψ⟩ = 1√
2

(
e−iπ

eiπ

)
= − 1√

2

(
1
1

)
(18.50)

This is equal to 1√
2

(
1
1

)
up to a phase factor (eiπ = −1), so at t = 2π

ω
(i.e., a full time

period), the spin is pointing towards +x once again.

At precisely half this time period, i.e., t = π
ω
,

|Ψ⟩ = 1√
2

(
e−i

π
2

ei
π
2

)
= − i√

2

(
1
−1

)
(18.51)

This is a spin pointing along −x (upto the phase eiπ/2 = −i).

At a quarter of this time period, i.e., t = π
2ω
,

|Ψ⟩ = 1√
2

(
e−i

π
4

ei
π
4

)
=

1− i√
2

(
1
i

)
(18.52)

This is a spin pointing along +y (upto a phase eiπ/4).

At three quarters of this time period, i.e., t = 3π
2ω
,

|Ψ⟩ = 1√
2

(
e−i

3π
4

ei
3π
4

)
=

1 + i√
2

(
−1
i

)
(18.53)

This is a spin pointing along −y (upto a phase ei3π/4).
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Thus we can see that in keeping with our classical idea of the electron precessing in the x−y
plane, the direction of the spin vector is also rotating in the counter-clockwise direction in
the x − y plane (the “precession”). The angular frequency of the precession is ω = 2µBB

ℏ ,
and the time period is τ = 2π

ω
= πℏ

µBB
. This phenomenon is the basis of MRI: the Hydrogen

atoms (protons actually) precess when in the presence of external magnetic fields, and emit
radiation in the mega-hertz range upon relaxing upon being excited. The detection of this
radiation can be used to map the emitting protons. All of this falls within the field of nuclear
magnetic resonance (NMR), which happens to be one of the most spectacular discoveries of
the 20th century simply in terms of its wide usage in the natural sciences! Naturally, the
discovery was awarded the Nobel prize.

Note that you can always carry out the same calculation with the state initially being in
some general direction; the maths will be a little more tedious, but you will still see the
precession.

18.7 Spin and spatial degrees of freedom

As mentioned in an earlier chapter, when there exists no physics that can couple the orbital
(L⃗) and spin (S⃗) angular momenta[

S⃗, r⃗
]
= 0,

[
S⃗, p⃗

]
= 0,

[
S⃗, L⃗

]
= 0 (18.54)

we can define eigenstates simultaneously for S⃗ and any one of the other three. For example,
we can construct a basis from |r⃗⟩ |↑⟩ and |r⃗⟩ |↓⟩ (outer or direct product of vector spaces),
such that

|Ψ⟩ =
∫
d3r⃗ [ψ+ (r⃗) |r⃗⟩ |↑⟩+ ψ− (r⃗) |r⃗⟩ |↓⟩] (18.55)

where ψ± (r⃗) are the amplitudes associated with finding a particle at position r⃗ and spin ↑
and ↓ respectively, with the time-dependent Schrödinger equation

iℏ
∂

∂t

(
ψ+

ψ−

)
=

[
− ℏ2

2m
∇⃗2 + V (r⃗) + µB

(
L⃗+ S⃗

)
· B⃗
](

ψ+ (r⃗, t)
ψ− (r⃗, t)

)
, (18.56)

where L⃗+ S⃗ = J⃗ gives the total angular momentum.

18.8 Addition of two angular momenta

For two angular momentum operators J⃗1 and J⃗2 that do not interact with each other in any
way (for example, two electrons which have no spin-dependent coupling among themselves),

we can write
[
J⃗1, J⃗2

]
= 0.

For the total angular momentum operator J⃗ = J⃗1+ J⃗2, we can see from the above, and using

[Jν,i, Jµ,j] = iℏδνµϵijkJµk, ν, µ ∈ {1, 2} (18.57)
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such that
[Ji, Jj] = iℏϵijkJk . (18.58)

Thus, all properties of angular momentum operators and their eigenstates hold for J⃗ . What
do these eigenstates look like?

Clearly, |j1,m1; j2,m2⟩ = |j1,m1⟩ |j2,m2⟩, which are eigenstates of J2
1 , J1z, J

2
2 and J2z, will

not work. This is for the following reason. While

Jz |j1,m1; j2,m2⟩ = (J1z + J2z) |j1,m1; j2,m2⟩ = ℏ (m1 +m2) |j1,m1; j2,m2⟩ , (18.59)

these eigenstates are not eigenstates of J2 as[
J2, Jiz

]
̸= 0 , i = 1, 2 . (18.60)

since [
(J1x + J2x)

2, Jαz
]
̸= 0 ,

[
(J1y + J2y)

2, Jαz
]
̸= 0 for α = 1, 2 . (18.61)

But since [
J2, Jα

]
= 0 (α = x, y, z) ,

[
J2, J2

i

]
= 0 , i = 1, 2 , (18.62)

we need eigenstates of J2, Jz, J
2
1 , andJ

2
2 . That is, we need |j,mj, j1, j2⟩. We next investigate

the addition of two spin-half angular momenta operators.

18.8.1 Addition of two spin-half operators

Given two spin-half operators S1 and S2, we can create a total spin operator

S⃗ = S⃗1 + S⃗2 (18.63)

such that we have four states |↑, ↑⟩ , |↑, ↓⟩ , |↓, ↑⟩ , |↓, ↓⟩ (where we are using the notation
that the first member denotes the z component of the first spin operator, and the second
component the same for the second spin operator).

Sz |↑↑⟩ = ℏ |↑↑⟩ , Sz |↓↓⟩ = −ℏ |↓↓⟩ , Sz |↑↓⟩ = 0 = Sz |↓↑⟩ (18.64)

where Sz = S1z + S2z. Thus, given that S2|S, Sz⟩ = S(S + 1)ℏ2|S, Sz⟩ , it is reasonable to
suppose that S = 0, 1 here.

Note that
S2 = S2

1 + S2
2 + S⃗1 · S⃗2 + S⃗2 · S⃗1

= S2
1 + S2

2 + 2S⃗1 · S⃗2

[
∵
[
S⃗1, S⃗2

]
= 0
]

=
3

2
ℏ2 + 2S1zS2z + S1+S2− + S1−S2+ ,

(18.65)

as

S2
i =

3ℏ2

4
, (18.66)

S⃗1 · S⃗2 = S1zS2z + S1xS2x + S1yS2y , (18.67)

= S1zS2z +
1

2
(S1+S2− + S1−S2+) , (18.68)
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and we have used Sν± = Sνx ± iSνy (ν ∈ 1, 2). Then, we can write

S2 |↑↑⟩ =

[
3

2
ℏ2 + 2

(
ℏ
2

)2
]
|↑↑⟩ = 2ℏ2 |↑↑⟩ , Sz |↑↑⟩ = ℏ |↑↑⟩ ,

S2 |↓↓⟩ = 2ℏ2 |↓↓⟩ , Sz |↓↓⟩ = −ℏ |↓↓⟩ .
(18.69)

As S2 |Ψ⟩ = S(S + 1)ℏ2 |Ψ⟩, we get from the above relations S = 1, Sz = ±1 for Ψ = | ↑↑
⟩ , | ↓↓⟩. The third state is obtained by operating S− = S1− + S2−.

S−√
2ℏ
|↑↑⟩ = S1− + S−√

2ℏ
|↑↑⟩

=
1√
2
(|↑↓⟩+ |↓↑⟩) [∵ S− |↑⟩ = ℏ |↓⟩ , S+ |↓⟩ = ℏ |↑⟩] ,

(18.70)

and the 1/
√
2 factor is a normalisation factor. Further, we can easily see that

S2 1√
2
(|↑↓⟩+ |↓↑⟩) = ℏ2(

3

2
− 2

4
+ 1)

1√
2
(|↑↓⟩+ |↓↑⟩) = 2ℏ2

1√
2
(|↑↓⟩+ |↓↑⟩) ,(18.71)

Sz
1√
2
(|↑↓⟩+ |↓↑⟩) = 0 , (18.72)

i.e., S = 1 , Sz = 0 for the third state given by 1√
2
(|↑↓⟩+ |↓↑⟩).

There is another normalised state, 1√
2
(|↑↓⟩ − |↓↑⟩), which is orthogonal to all these three

eigenstates (Check this!), such that

Sz
1√
2
(|↑↓⟩ − |↓↑⟩) = 0 (18.73)

and

S2 1√
2
(|↑↓⟩ − |↓↑⟩) =

(
3

2
ℏ2 − 2

ℏ2

4
− ℏ2

)
1√
2
(|↑↓⟩ − |↓↑⟩) = 0 (18.74)

Therefore, this fourth eigenstate is characterized by S = 0 and Sz = 0.

Together, we have the following eigenstates:

triplet(3) states :


|S = 1, Sz = 1⟩ → |↑↑⟩
|S = 1, Sz = 0⟩ → 1√

2
(|↑↓⟩+ |↓↑⟩)

|S = 1, Sz = −1⟩ → |↓↓⟩

singlet(1) state :
{
|S = −0, Sz = 0⟩ → 1√

2
(|↑↓⟩ − |↓↑⟩)

(18.75)

Note the projection operators

P1 =
3

4
+

1

ℏ2
S⃗1 · S⃗2 =

3

4
+

1

2ℏ2
(
S2 − S2

1 − S2
2

)
P2 =

1

4
− 1

ℏ2
S⃗1 · S⃗2 =

1

4
− 1

2ℏ2
(
S2 − S2

1 − S2
2

) (18.76)
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which project onto the triplet and singlet spaces respectively:

P1 |1,m⟩ =
(
3

4
+

1

ℏ2
S⃗1 · S⃗2

)
|1,m⟩

=

[
3

4
+

1

2ℏ2
(
S2 − S2

1 − S2
2

)]
|1,m⟩

=

[
3

4
+

1

2ℏ2

(
1× 2− 3

4
− 3

4

)]
|1,m⟩

= |1,m⟩

(18.77)

P1 |0, 0⟩ =
[
3

4
+

1

2

(
0− 3

4
− 3

4

)]
|0, 0⟩ = 0 (18.78)

P0 |1,m⟩ = (1− P1) |1,m⟩ = 0 (18.79)

P0 |0,m⟩ = (1− P1) |0, 0⟩ = |0, 0⟩ (18.80)

We will see in the next chapter the elementary problem for which these are the eigenstates.
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Chapter 19

A system of Interacting Spins

To see a World in a Grain of Sand
And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand
And Eternity in an hour

William Blake, “Auguries of Innocence”.

We are now going to embark on an exciting journey. Using the Heisenberg spin exchange
problem of two spin-1/2 degrees of freedom as a template, we will unveil a wide variety of
important concepts and ideas in quantum mechanics. Buckle up!

19.1 Eigenspectrum of the Heisenberg spin exchange

problem

How do we enumerate the eigenstates of a system of coupled, i.e., interacting, spins? Consider
the simplest case - the Heisenberg spin exchange Hamiltonian:

H = λS⃗1 · S⃗2 , λ > 0 , (19.1)

where λ is the spin exchange coupling. Consider also that the particles carrying the spin are
localised in space and V (r) = 0. Now, note that since

H ∝ S⃗i , [H,Siz] ̸= 0 , (i = 1, 2) . (19.2)

Hence, states of definite Siz cannot be eigenstates of the above Hamiltonian H. However,[
H,S2

]
= 0, where S2 =

(
S⃗1 + S⃗2

)2
(19.3)

This is because

S2 = S2
1 + S2

2 + 2S⃗1 · S⃗2 =⇒ S⃗1 · S⃗2 =
1

2

(
S2 − S2

1 − S2
2

)
(19.4)
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Clearly, [H,S2] = [H,S2
1 ] = [H,S2

2 ] = 0. This means that the eigenstates can be labelled by
S,mS, S1 and S2 - states like |S,mS;S1, S2⟩. The eigenvalues are

H |S,mS;S1, S2⟩ =
λ

2
ℏ2 [S (S + 1)− S1 (S1 + 1)− S2 (S2 + 1)] |S,mS;S1, S2⟩

=
λ

2
ℏ2
[
S (S + 1)− 3

2

]
|s,mS;S1, S2⟩ ,

(19.5)

as Si(Si + 1) |S,mS;S1, S2⟩ = 3ℏ2
4
|S,mS;S1, S2⟩ . The energy eigenvalue is clearly indepen-

dent of mS, and the contributions of the Si(Si + 1) (i = 1, 2) terms has become a constant
factor 3ℏ2/4. All states with the same S but different mS are thus degenerate:

unique ground state: ES=0 = −
3

4
λℏ2 [singlet→ S = 0,mS = 0]

triply degenerate excited states: ES=1 =
1

4
λℏ2 [triplets→ S + 1,mS = −1, 0, 1]

(19.6)
The gap between the ground state and the group of excited states is

∆E = λℏ2 (19.7)

The form of the eigenstates have already been mentioned in eq. 18.75. We thus get the
following spectrum for the problem:

E |Ψ⟩

−3
4
λℏ2 |S = 0, Sz = 0⟩ = 1√

2
(|↑, ↓⟩ − |↓, ↑⟩)

1
4
λℏ2

|S = 1, Sz = 0⟩ = 1√
2
(|↑, ↓⟩+ |↓, ↑⟩)

|S = 1, Sz = 1⟩ = |↑, ↑⟩

|S = 1, Sz = −1⟩ = |↓, ↓⟩

Table 19.1: Spectrum of Heisenberg spin-exchange Hamiltonian

19.2 Symmetries, symmetry breaking and quantum fluc-

tuations

At this point, we can have a discussion on the importance of symmetries for a quantum
mechanical system and the consequences that arise from their breaking. We will, of course,
use the Heisenberg spin exchange problem of two interacting spin-1/2 degrees of freedom
discussed just above as an illustrative example.

Why are symmetries so important in Quantum Mechanics?
Recall that we have often encountered the fact that when a Hamiltonian possesses certain
symmetries, this reflected in the commutation of the Hamiltonian with certain operators
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that carried out the symmetry related transformations. The commutation means that si-
multaneous eigenstates of the Hamiltonian and these operators, and reflected an invariance
of members of the Hilbert space, especially the ground state, under those transformations.
For instance, remember that in the case of the particle in a box and the simple harmonic
oscillator problems, we found the potentials (and hence the entire Hamiltonian) to enjoy
parity symmetry in the one dimensional space on which these problems are defined. As
a consequence, the Hamiltonian commuted with the parity operator and the ground state
wavefunction was parity symmetric (i.e., had even parity under the parity transformation,
of eigenvalue P̂ = +1). Further, the rest of the eigenstates alternated in the parity eigen-
value (between odd and even parity). Similarly, the free particle problem had continuous
translation symmetry, such that the Hamiltonian commuted with the linear momentum op-
erator and all the eigenstates ψ ∝ eikx possess continuous translation invariance on the open
interval −∞ ≤ x ≤ ∞.

Figure 19.1: Various kinds of magnetism observed in nature. Source: The internet.

Now, let us return to the problem of two interacting spin-1/2s we studied above.
First, note that for the spin exchange strength (or “coupling”) λ > 0, we have an antiferro-
magnetic exchange interaction between the two spins. By this, we mean that such an interac-
tion will naturally favour the anti-alignment of the two spins within the ground state configu-
ration (such the the ground state energy is negative). Without having worked out the eigen-
states and eigenvalues to the Hamiltonian, you could (as a first guess) have chosen the state
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| ↑1↓2⟩ as the ground state, based on the reasoning that λS1zS2z| ↑1↓2⟩ = −λℏ2
4
| ↑1↓2⟩ (i.e.,

a lowering of the energy beyond 0 has thus been achieved). However, this reasoning is too

naive: we are after all working with a Hamiltonian λS⃗1 · S⃗2, i.e., other than the S1zS2z term,
it also contains the S1xS2x + S1yS2y =

1
2
(S1+S2− + S1−S2+) terms. Unless there is a miracle,

these terms will also have a role to play in determining the nature of the ground state as
well as its eigenvalue. Now, if you look back at the solution, you can easily see that this is
indeed the case! The true ground state is neither | ↑1↓2⟩ nor | ↓1↑2⟩. Instead, it is the singlet
state 1√

2
(|↑1, ↓2⟩ − |↓1, ↑2⟩), a linear superposition of | ↑1↓2⟩ and | ↓1↑2⟩. We will see soon

below that this singlet state possesses a property called entanglement that is quite special
to quantum mechanics.

Figure 19.2: The spin-S degree of freedom represented on the Bloch sphere. The north and
south poles represent the |1⟩ ≡ | ↑⟩ and |0⟩ ≡ | ↓⟩ “classical” states. The vector |ψ⟩ has
length

√
S(S + 1)ℏ, and lies on the surface of a sphere, and defined by the polar angles

(θ, ϕ).

But why is the singlet state ( 1√
2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)) chosen instead of its compo-

nents (| ↑1↓2⟩ and | ↓1↑2⟩)?
Well, an answer lies in looking at the symmetries of the Heisenberg spin exchange Hamilto-
nian

H =
λ

2
ℏ2
[
S (S + 1)− 3

2

]
. (19.8)

An inspection of the Hamiltonian reveals that it possesses symmetry under a common rota-
tion of both spins S⃗1 and S⃗2, amounting to the fact that the total spin vector S⃗ = S⃗1 + S⃗2

can point in any direction in the (x, y, z) Cartesian coordinate system on the surface of a
sphere of radius

√
S(S + 1)ℏ. But when we make the specific choice of | ↑1↓2⟩ and | ↓1↑2⟩,

we are explicitly “breaking” (or lowering/violating) the spherical (i.e., rotational) symmetry

of S⃗. Further, | ↑1↓2⟩ and | ↓1↑2⟩ are not even the eigenstates of the Hamiltonian H given
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above, as can be seen from the fact that even though

Sz(= S1z + S2z)| ↑1↓2⟩ = 0 = Sz| ↓1↑2⟩ , (19.9)

i.e., it appears as if | ↑1↓2⟩ and | ↓1↑2⟩ are eigenstates of Sz, we find that

S1−S2+| ↑1↓2⟩ = | ↓1↑2⟩ , S1+S2−| ↓1↑2⟩ = | ↑1↓2⟩ . (19.10)

This means that | ↑1↓2⟩ and | ↓1↑2⟩ are not eigenstates of S2. In fact, we can see that
the two linear superposition states 1√

2
(| ↑1↓2⟩ ± | ↓1↑2⟩) arise from the diagonalisation of

the following simple 2 × 2 matrix Hsplit, obtained by taking the matrix elements of the
Hamiltonian H = λ(S1zS2z +

1
2
(S1+S2− + S1−S2+)) written in the basis of the | ↑1↓2⟩ and

| ↓1↑2⟩ states

Hsplit =

(
⟨↑1↓2 |H| ↑1↓2⟩ ⟨↑1↓2 |H| ↓1↑2⟩
⟨↓1↑2 |H| ↑1↓2⟩ ⟨↓1↑2 |H| ↓1↑2⟩

)
=
λℏ2

2

(
0 1
1 0

)
−λℏ

2

4

(
1 0
0 1

)
=
λℏ2

2
σx−

λℏ2

4
I .

(19.11)

The diagonalisation of Hsplit is quite straighforward: we can easily see that the spin single
and triplet zero states ( 1√

2
(| ↑1↓2⟩ ± | ↓1↑2⟩)) are the true quantum eigenstates formed from

the “classical” symmetry broken choices of | ↑1↓2⟩ and | ↓1↑2⟩. Further, this is clearly the
outcome of the action of the S1xS2x + S1yS2y = 1

2
(S1+S2− + S1−S2+) terms, and leads to

a “lifting” of the degeneracy (in the energy contribution from only the S1zS2z term of the
Hamiltonian, as seen above) of the | ↑1↓2⟩ and | ↓1↑2⟩ states. From the viewpoint of the
“classical” (or non-entangled) states | ↑1↓2⟩ and | ↓1↑2⟩, these two terms can be thought
of as the quantum fluctuation content in the Heisenberg spin exchange Hamiltonian, while
the S1zS2z term can be thought of as a classical potential energy cost. In this way, we can
see that the singlet ground state 1√

2
(| ↑1↓2⟩ − | ↓1↑2⟩) and the triplet zero excited state

1√
2
(| ↑1↓2⟩ + | ↓1↑2⟩) possess the full rotational symmetry of the Heisenberg Hamiltonian

(reflected in Sz = 0 for these two states), and this is achieved through the action of the
quantum fluctuation terms.

A closer look at quantum fluctuations.
For another way in which to see where the terminology “quantum fluctuations” arises from,
note that applying the Schrödinger equation to the two “classical” states |ψCl⟩ = (| ↑1↓2
⟩ | ↓1↑2⟩)†, we obtain

iℏ
∂|ψCl⟩
∂t

= H|ψCl⟩

= λ(S1zS2z +
1

2
(S1+S2− + S1−S2+))|ψCl

iℏ
∂

∂t
(| ↑1↓2⟩ | ↓1↑2⟩)† = λ(S1zS2z +

1

2
(S1+S2− + S1−S2+))(| ↑1↓2⟩ | ↓1↑2⟩)†

= (
λℏ2

2
σx −

λℏ2

4
I)(| ↑1↓2⟩ | ↓1↑2⟩)† . (19.12)

The presence of the off-diagonal pieces within the σx part of the Hamiltonian reflects the fact
that the classical states | ↑1↓2⟩ and | ↓1↑2⟩ are not eigenstates of H. Indeed, this equation of
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motion shows that if we start with a state | ↑1↓2⟩, then there exists a “transition amplitude”
⟨↓1↑2 |H| ↑1↓2⟩ = λℏ2/2, i.e., the Hamiltonian causes a transition from the state | ↑1↓2⟩ to
the state | ↓1↑2⟩. A similar transition amplitude is found if we start instead with the state
| ↓1↑2⟩, with the system transition to the state | ↑1↓2⟩. These non-zero transition amplitudes
are the quantum fluctuations between the two classical states. Instead, if we were to start
with the spin singlet and spin-triplet-zero eigenstates of H, then obviously the solution to
the time-dependent Schrödinger equation will yield only a trivial phase of eiEt/ℏ (where E
corresponds to the energy eigenvalues Es = −3J/4 and Et0 = J/4 of the singlet and triplet-
zero eigenstates respectively). Thus, we can write the time evolution of the state | ↑1↓2⟩
as

| ↑1↓2⟩(t) =
eiEst/ℏ
√
2
× 1√

2
(| ↑1↓2⟩ − | ↓1↑2⟩) +

eiEt0t/ℏ
√
2
× 1√

2
(| ↑1↓2⟩+ | ↓1↑2⟩) . (19.13)

This indicates that the state | ↑1↓2⟩ evolves in time t in the form of an equal amplitude
(i.e., with equal amplitudes 1/

√
2 for the two pieces) superposition of the two eigenstates

|ψs⟩ = 1√
2
(| ↑1↓2⟩ − | ↓1↑2⟩) and |ψt0⟩ = 1√

2
(| ↑1↓2⟩+ | ↓1↑2⟩). Then, at any given time point

t, the probability of the state | ↑1↓2⟩(t) being in either of the two eigenstates is equal (and
independent of time), as can be seen from

P⟨ψs|↑1↓2⟩ = |⟨ψs| ↑1↓2⟩(t)|2 = |
eiEst/ℏ
√
2
|2 = 1

2
,

P⟨ψt0|↑1↓2⟩ = |⟨ψt0| ↑1↓2⟩(t)|2 = |
eiEt0t/ℏ
√
2
|2 = 1

2
. (19.14)

Further, if we ask for the probability for the state | ↑1↓2⟩ to remain in the same state at time
t, we find

P⟨↑1↓2(0)|↑1↓2⟩(t) = | 1√
2
(
1√
2
(⟨↑1↓2 | − ⟨↓1↑2 |) +

1√
2
(⟨↑1↓2 | − ⟨↓1↑2 |))×

1√
2
(
eiEst/ℏ
√
2

(| ↑1↓2⟩ − | ↓1↑2⟩) +
eiEt0t/ℏ
√
2

(| ↑1↓2⟩ − | ↓1↑2⟩))|2

= |e
iEst/ℏ

2
+
eiEt0t/ℏ

2
|2

=
1

2
(1 + cos

(
(Et0 − Es)t

ℏ

)
) . (19.15)

This reveals the fact that the probability P⟨ψs|↑1↓2⟩(t) varies periodically in time about the
mean value of 1/2, and ranges between 0 ≤ P⟨ψs|↑1↓2⟩(t) ≤ 1. Similarly, we find that the
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probability for the state | ↑1↓2⟩ to transition to the same state | ↓1↑2⟩ time t is given by

P⟨↑1↓2(0)|↓1↑2⟩(t) = | 1√
2
(
1√
2
(⟨↑1↓2 | − ⟨↓1↑2 |) +

1√
2
(⟨↑1↓2 | − ⟨↓1↑2 |))×

1√
2
(
eiEst/ℏ
√
2

(| ↑1↓2⟩ − | ↓1↑2⟩)−
eiEt0t/ℏ
√
2

(| ↑1↓2⟩ − | ↓1↑2⟩))|2

= |e
iEst/ℏ

2
− eiEt0t/ℏ

2
|2

=
1

2
(1− cos

(
(Et0 − Es)t

ℏ

)
) . (19.16)

Thus, the transition probability P⟨↑1↓2(0)|↓1↑2⟩(t) also has a similar periodic variation in time
about the mean value of 1/2, and ranges between 0 ≤ P⟨ψs|↑1↓2⟩(t) ≤ 1. However, the
two probabilities P⟨↑1↓2(0)|↑1↓2⟩(t) and P⟨↑1↓2(0)|↓1↑2⟩(t) are constrained by the requirements of
unitarity

P⟨↑1↓2(0)|↑1↓2⟩(t) + P⟨↑1↓2(0)|↓1↑2⟩(t) = 1 . (19.17)

In this way, we see quantum fluctuations reflect the fact that the time evolution of classical
states involve the simultaneous time evolution of multiple quantum eigenstates, as dictated
by quantum mechanics. Further, quantum fluctuations clearly show up in the fact that the
probability to stay in the same classical state, as well as the probability to transition into
another classical state, are both time dependent functions that are overall constrained by the
requirement by unitarity. Clearly, there can be no quantum fluctuations if we are working
with the true quantum eigenstates of the Hamiltonian. As we will see below, while the
classical states do not possess the property known as entanglement, quantum fluctuations
lead to a finite entanglement in the quantum eigenstates (and which can be quantified).

Ferromagnetism and Spontaneous Symmetry Breaking.
However, the | ↑1↑2⟩ and | ↓1↓2⟩ eigenstates do not possess the full rotational symmetry on
the sphere, as can be seen from the fact that (i) we have defined the z-axis from among
an infinite number of possible choices on the full sphere, and (ii) Sz = ±1 for these two
eigenstates. However, they are excited eigenstates of the full Hamiltonian (H ∝ S(S + 1))
for λ > 0.

However, what would happen if they (or even one of them) would become the ground state(s)?
This can actually happen for the case of a ferromagnetic spin exchange coupling λ < 0; in this
case, it is easy to see that the energy is lowered by choosing the spins to be aligned. Indeed,
the eigenspectrum for the problem with λ < 0 is simply obtained from that for λ > 0 by
reversing the sign of λ in the expressions shown above. Thus, we have a three-fold degenerate
ground state manifold in the problem now: | ↑1↑2⟩ , | ↓1↓2⟩ and 1√

2
(| ↑1↓2⟩ + | ↓1↑2⟩). The

Sz values for these three states is +1,−1 and 0 respectively. Furthermore, only the last
of these three possesses the rotational symmetry of the Hamiltonian. It turns out, though,
that this degenerate manifold of ground states is highly susceptible towards the lifting of the
degeneracy.

Consider adding a Zeeman field-spin coupling term B(S1z+S2z) to the ferromagnetic Heisen-
berg spin exchange Hamiltonian, and with λ < 0. Then, it is easily seen that B ̸= 0 imme-
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diately lifts the triple degeneracy: such a coupling to an external field immediately affects
the energy of the | ↑1↑2⟩ and | ↓1↓2⟩ in opposite ways, while it does not affect the triplet zero
state 1√

2
| ↑1↓2 + ↓1↑2⟩ state at all!

Thus, | ↑1↑2⟩ is the unique ground state for B → 0−, while | ↓1↓2⟩ is the unique ground
state for B → 0+. These are the two ferromagnetic (or spin aligned) ground states. Thus,
it would appear that taking the limit of B = 0 is singular, as the nature of the ground state
reverses completely from | ↑1↑2⟩ to | ↓1↓2⟩ across it. In this sense, we can say that even an
infinitesmally small B field picks out a unique ferromagnetic (spin aligned) ground state for
the case of λ < 0. This strange occurrence is termed as spontaneous symmetry breaking for
a thermodynamically large system of spin-1/2 degrees of freedom (i.e., with 1023 no. of con-
stituents) that are interacting with the same Heisenberg spin exchange Hamiltonian. Indeed,
this mechanism is understood to be the origin of ferromagnetism in materials such as Iron.
However, as will become clear in an upcoming lecture, there is absolutely no entanglement
content in such symmetry broken (or “classical”) ground states.

The antiferromagnetic problem can be different.
We will see in a later section of this chapter that such a breaking of the rotational symmetry
of the antiferromagnetic Heisenberg Hamiltonian’s singlet ground state ( 1√

2
(| ↑1↓2⟩−| ↓1↑2⟩),

for λ > 0) is not achieved for B → 0±. Instead, one needs a critical value of the external
|B| > 2λ field to replace the singlet state with either the | ↑1↑2⟩ or | ↓1↓2⟩ states. As we will
discuss there, this is a classic signature of a level-crossing phenomenon that is at the heart
of phase transitions (i.e., changes of state of matter) at zero temperature driven purely by
quantum fluctuations.

The overarching lesson to take from here.
Quantum fluctuations prefer eigenstates (and especially ground states) that preserve all sym-
metries of the Hamiltonian; such eigenstates typically possess a rich entanglement content.
Thus, they naturally tend to compete with the tendency for a system to undergo sponta-
neous symmetry breaking and end up in classical ground states that possess very little (if
any) entanglement.

The Mermin-Wagner-Hohenberg theorem states that quantum fluctuations always win over
symmetry breaking tendencies in systems that exist in one spatial dimension (or less), there
is adequate evidence for the fact that three dimensional quantum systems undergo symmetry
breaking quite easily. This makes two dimensional quantum systems the ideal playground
for the competition between quantum fluctuations and symmetry breaking, and physicists
have been devoting considerable attention to them for the past four decades (including the
Nobel Prize being awarded to Thouless, Kosterlitz and Haldane in 2016).

19.3 Entanglement of the Ground State: preliminaries

We will now see that the singlet ground state ( 1√
2
(| ↑1↓2⟩− | ↓1↑2⟩)) of the antiferromagnetic

Heisenberg spin exchange problem for two interacting spin-1/2s is a so-called maximally
entangled state of the two spins. Entanglement here refers to the phenomenon that we
cannot describe the state of any one of the spins without specifying that of the other. In
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other words, measuring the spin angular momentum of either spin would also determine the
other spin - the two results will be anti-correlated. If S1z is measured to be up (upon acting
with S1z on the singlet state), we know that S2z is down, and vice versa. This property
persists irrespective of spatial distance between the two spins. If we produce a pair of spins
in such a singlet state, and distribute them over a large distance without affecting their spin
angular momenta, they will remain locked in this state. If the first measurement on S1z

is done on the moon and the result is up (i.e., ⟨S1z⟩ = ℏ/2), a second measurement done
infinitesimally later on the earth on S2z will give down (i.e., ⟨S2z⟩ = −ℏ/2). We will return
to this discussion slightly later, in the form of the Einstein-Podolsky-Rosen (EPR) gedanken.

This is in contrast to a separable state, where measuring one subsystem (say, spin 1) does not
affect the other (say, spin 2). This is an example of a separable state (though un-normalized) :

|↑⟩1 ⊗ (|↑⟩+ |↓⟩)2 , (19.18)

where it is clearly seen that the state of spin 1 is in a Direct Product (⊗) with that of spin
2. Such a separation is clearly not possible for the singlet state 1√

2
(| ↑1↓2⟩ − | ↓1↑2⟩).

One way of quantifying quantum entanglement is by calculating the von Neumann entropy
(VNE) of the reduced density matrix of the state (referred to more popularly as the En-
tanglement entropy (EE)). First we will define what a density matrix is. Density matrices
are an alternate formulation of quantum mechanics, where we describe the system by an
operator ρ instead of the wavefunction ψ. This is more general compared to the wavefunc-
tion approach, because there are systems which cannot be represented by a wavefunction.
Consider, for example, a system of particles ( with a spectrum {E1, ..., En}) coupled with a
thermal bath at a temperature T . The system could be in any of its eigenstates Ei, with a
probability exp{−βEi} (where β = 1/kBT , and kB is the Boltzmann constant). This cannot
be represented by a wavefunction. (Note that the wavefunction |Ψ⟩ =

∑
i exp{−βEi} |Ψi⟩

is not a correct choice, because this is still a single state, whereas we know from statistical
mechanics that the system has to be in a probabilistic mixture of various eigenstates.) Such
a probabilistic system can instead be represented using a density matrix.

19.4 A quick introduction to Density Matrices

A density matrix ρ is mathematically defined as a positive semi-definite Hermitian operator
in the Hilbert space of the complete system (i.e., its eigenvalues as non-negative), such that

the expectation value of any operator Ô is given by
〈
Ô
〉
= Tr

(
ρ Ô

)
. Being Hermitian, the

density matrix can be expanded in a complete orthonormal basis:

ρ =
∑
i

Ci |i⟩ ⟨i| (19.19)

Note that ρ is an operator, as |i⟩ ⟨i| corresponds to a matrix that acts on the state vectors
|i⟩and ⟨i|. To see this in a simple example, we can use ⟨i| as the state row vectors (1 0), (0 1)
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of a 2-level system and |i⟩ as the corresponding column vectors. Then

ρ =
∑
i

Ci |i⟩ ⟨i| = C1

(
1
0

)
(1 0) + C2

(
0
1

)
(0 1) .

= C1

(
1 0
0 0

)
+ C2

(
0 0
0 1

)
=

(
C1 0
0 C2

)
. (19.20)

Products such as |i⟩ ⟨i| are called Outer Products, and correspond to operators. On the
other hand, terms like ⟨i|i⟩ is called the Inner Products and give rise to scalar quantities
(i.e., number, either real or complex).

Since ρ is positive semi-definite (i.e., its eigenvalues as non-negative), we will have Ci ≥ 0.
If we take the special case of Ô = I, we can write

1 = ⟨I⟩ = Tr (ρI) =
∑
j

⟨j| ρ |j⟩

=
∑
i,j

Ci ⟨j|i⟩ ⟨i|j⟩ (as ρ =
∑
i

Ci|i⟩⟨i|)

=
∑
j

Cj [∵ ⟨j|i⟩ = δij] , (19.21)

which gives

Tr(ρ) =
∑
j

Cj = 1 . (19.22)

This indicates that the Cis can be thought of as the quantum mechanical probabilities
associated with the basis of states {|i⟩} indexed by i.

All states that can be written as a density matrix can be classified into two classes: pure
states and mixed states. If the ρ is defined by Ci = δij such that ρ = |j⟩ ⟨j|, we call this a
pure state. Such a state is exactly equivalent to saying that the system can be described by
a single ket |j⟩, and the density matrix has only one diagonal element (say Ci) of value 1 and
all other elements (diagonal as well as off-diagonal) being 0. Working with wavefunctions
means we are restricting our systems to just pure states. Mixed states, on the other hand,
refer to any system which is not in a pure state. Such a state cannot be represented by a
wavefunction, and we must resort to working with density matrices. In such density matrices,
more than one diagonal element is non-zero; additionally, there may be off-diagonal elements
that are non-zero as well. We will now see that the presence of several non-zero diagonal
(and maybe also off-diagonal) elements encodes a special property called entanglement. It
is also important to note that a pure state can also be entangled, and studied via the notion
of a so-called reduced density matrix (to be introduced below).

The motivation for defining such an object can be noted in the following manner. Recall
that if we have an isolated quantum system (which is what we have been discussing for
most of these lectures!), we can always write a general superposition state of the system
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as |Ψ⟩ =
∑

iCi |ψi⟩ (where the Ci are the superposition coefficients and the {|ψi⟩} is the

eigenbasis), then the expectation value of an operator Ô is simply obtained as

⟨Ô⟩ = ⟨Ψ| Ô |Ψ⟩ =
∑
ij

CiC
∗
j ⟨ψj| Ô |ψi⟩ . (19.23)

In the above, the product CiC
∗
j defines the probability distribution for the states within the

state |Ψ⟩.

On the other hand, let us consider an open quantum system, i.e., a quantum system that is
coupled to an environment. In such a two-component system, a general state of the complete
system + environment would be |Ψ⟩ =

∑
ijKij |ψi⟩ |ϕj⟩, where ψ represents the state of one

component (say, the quantum system) and ϕ that of the other (say, the environment to which
the system is coupled). An operator Ô that acts only on component ψ (i.e., the quantum
system) would have an expectation value〈

Ô
〉

= ⟨Ψ| Ô |Ψ⟩ =
∑
ijmn

KijKmn⟨ϕn|ϕj⟩ ⟨ψm| Ô |ψi⟩

=
∑
ijm

KijKmjÔmi (as ⟨ϕj|ϕi⟩ = δij)

=
∑
im

ρmiÔmi (where ρmi =
∑
j

KijKmj , Omi = ⟨ψm| Ô |ψi⟩)

= Tr(ρÔ) , (19.24)

where the matrix elements ρmi =
∑

jKijKmj constitute the density matrix ρ. The goal here
was to be able to write down the expectation value of a ψ− (or system-)only operator purely
in terms of ψ−basis states, such that the details of the subsystem ϕ (i.e., the environment)
have been put into the density matrix elements ρmi.

In the natural (i.e., diagonal) basis of ρ, the expectation value can be written as〈
Ô
〉
=
∑
i

ρiÔii . (19.25)

This tells us that the diagonal matrix element ρi is like a probability for the system to be
in the state |i⟩, and the expectation value is a sum weighted over these probabilities. This
is analogous to the expression for thermal average of a function g(E): ⟨g⟩ =

∑
E f(E)g(E),

f(E) = exp(−E/kBT ) being the Boltzmann probability distribution. This opens a link
between the worlds of quantum mechanics and statistical mechanics, and I hope that you
will learn more about this in advanced courses.

Finally, the density matrix ρ describing a mixed state has an equation of motion equivalent
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to the Schrodinger equation called the Liouville-von Neumann equation :

dρ

dt
=

∑
i

Ci

[
d |i⟩
dt
⟨i|+ |i⟩ d ⟨i|

dt

]
(using ρ =

∑
i

Ci|i(t)⟩⟨i(t)|) ,

=
1

iℏ
∑
i

Ci [H |i⟩ ⟨i| − |i⟩ ⟨i|H] (using H|i⟩ = iℏ
d|i⟩
dt

, ⟨i|H = −iℏd⟨i|
dt

) ,

=
1

iℏ
(Hρ− ρH) ,

=
1

iℏ
[H, ρ] . (19.26)

19.5 Reduced Density Matrices and von-Neumann En-

tropy

We can now formulate a measure for quantum entanglement. Consider a system consisting
of two subsystems A and B, each with its own basis

{∣∣iA〉} and
{∣∣iB〉}, described by the

density matrix ρAB. Further, the reduced density matrix of subsystem A is defined as

ρA ≡ TrB
(
ρAB

)
=
∑
i

〈
iB
∣∣ ρAB ∣∣iB〉 , (19.27)

and is obtained by tracing the density matrix over the states of subsystem B. The von-
Neumann entropy (VNE) of a density matrix ρAB (i.e., for the complete system AB) is
defined as

S = −Tr
(
ρAB ln ρAB

)
= −

∑
i

ρABi ln ρABi

= −
∑
i

Ci lnCi , (19.28)

where we have evaluated the trace in the natural (or diagonal) basis of ρAB =
∑

iCi |i⟩ ⟨i| .
Note the similarity of this expression with the well-known expression (due to Boltzmann) for
thermal entropy of a quantum system in thermal equilibrium with a reservoir at temperature
T : Sthermal = −kB

∑
iwi ln(wi) , where wi are the Boltzmann probability weights associated

with the states i of the system. It is this similarity that led von Neumann to denote the
above quantity S as an entropy ; it is, however, a purely quantum mechanical phenomenon
and has nothing to do with our understanding of thermal entropy.

Similarly, the von-Neumann entropy for the reduced density matrix of A is known as the
Entanglement entropy (EE) and defined as

SA ≡ −Tr
[
ρA ln ρA

]
= −

∑
i

ρAi ln ρ
A
i (19.29)

where we evaluated the trace in the natural (or diagonal) basis of ρA. This quantity SA
is a measure of the entanglement between the subsystems A and B, and is non-zero only
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when the complete state of the system cannot be written as a separable state (i.e., a direct
product of the states) of the subsystems A and B. In this way, SA encodes some kind of a
connectivity between the subsystems A and B within the state of the complete system, and
its non-zero value arises when we attempt to (somewhat artificially) partition the full system
into subsystems (here A and B).

We could also have equivalently carried this out from the perspective of B, and it can be
shown that SA = SB. Below, we will demonstrate this explicitly for the case of two spin-1/2s
locked in a singlet state, but it can be shown more generally with a little more hard work
using something called the Schmidt decomposition. I will demonstrate this now.

Let us begin by considering two Hilbert spaces HA and HB of dimensions NA and NB. The
Schmidt decomposition theorem of linear algebra states that for a pure state |ψ⟩ ∈ HAB

(where HAB is the tensor product space HAB = HA⊗HB), there exist two orthonormal sets
of states {|ψiA⟩ ∈ HA} and {|ϕiB⟩ ∈ HB} with i = 1, . . . , NS where NS = min(NA, NB) such
that

|ψ⟩ =
NS∑
i=1

Ki |ψiA⟩ |ϕiB⟩ , 0 ≤ Ki ≤ 1 ,

NS∑
i=1

K2
i = 1 . (19.30)

The coefficients Ki are called the Schmidt coefficients, NS the Schmidt number, |ψiA⟩ and
|ϕiB⟩ the Schmidt basis functions and K2

i are the probabilities associated with the states
|ψiA⟩ and |ϕiB⟩. The proof of the Schmidt decomposition theorem uses the singular value
decomposition theorem, and lies beyond the purview of this course.

Using the |ψ⟩ given above, we obtain the density matrix ρAB as

ρAB = |ψ⟩ ⟨ψ| =
NS∑
i=1

Ki |ψiA⟩ |ϕiB⟩
NS∑
j=1

Kj ⟨ψjA| ⟨ϕjB| , (19.31)

such that taking a partial trace over the subsystem B yields

ρA = TrB (ρAB) =

NS∑
i=1

⟨ϕiB| ρAB |ϕiB⟩ =
NS∑
i=1

K2
i |ψiA⟩ ⟨ψiA| , (19.32)

where we have used the fact that ⟨ϕiB|ϕjB⟩ = δij . Clearly, ρA represents a mixed state of
the subsystem A. Similarly, by taking a partial trace of ρAB over subsystem A yields the
reduced density matrix for subsystem B as

ρB = TrA (ρAB) =

NS∑
i=1

⟨ψiA| ρAB |ψiA⟩ =
NS∑
i=1

K2
i |ϕiB⟩ ⟨ϕiB| , (19.33)

using ⟨ψjA|ψiA⟩ = δij, and obtains a mixed state for subsystem B. Thus, given that we
have now obtained the diagonal representations of both ρA and ρB, we find that the set of
non-trivial eigenvalues {K2

i } are obtained for both ρA and ρB, i.e.,

{ρAi } = {K2
i } = {ρBi } . (19.34)
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In this way, we have obtained the spectral equality of the two reduced density matrices ρA

and ρB. It is now straightforward to see that the entanglement entropies derived from their
eigenvalues is the same:

SA = SB = −
NS∑
i=1

K2
i lnK

2
i . (19.35)

This is a striking result, as it shows that the EE is not dependent on the details of the
individual subsystems A and B. Rather, the EE is dependent on something that is common
to them (and which I referred to as their connectivity earlier).

Further, it can be shown that the von Neumann entropy of the complete system (SAB) is
less than or equal to the sum of the entanglement entropies of the two subsystems A and B,

SAB ≤ SA + SB =⇒ SAB ≤ 2SA (as SA = SB) . (19.36)

This is referred to as the subadditivity property of entanglement entropy. The equality is
attained for the case of two independent system A and B, such that ρAB = ρA ⊗ ρB . This
is because we can write ρAB = |ψ⟩ ⊗ ⟨ψ| for such a case, where |ψ⟩ =

∣∣ψA〉⊗ ∣∣ψB〉.
As an exercise, show that SAB = 0 = SA = SB for ρAB = ρA ⊗ ρB.

Let us try to understand why the von Neumann entropy (VNE, SAB) and the entanglement
entropy (EE, SA) should be indicators for the quantum entanglement. First note that if a
general density matrix ρ represents a pure state |i⟩, then the corresponding von Neumann
entropy (VNE) will be zero. This is simply seen since for a pure state

ρ = |i⟩ ⟨i| = δij =⇒ ρj = δij (as ρi = 1 for some one value of i and zero otherwise)

=⇒ S = −
∑
j

ρj ln ρj = −ρi ln ρi = 0 . (19.37)

Notice that the zero appeared because the 0 ln(0) terms evaluate to 0 (by l’Hospital’s rule)
and 1 ln(1) = 0. Thus, we see that the VNE for a pure state is zero. Next, note that since the
function ln(x) is concave (as its derivative, 1/x, is a strictly decreasing function on the entire
interval (0,∞)), we can use Jensen’s inequality which states that for a concave function f(x)
and a set of positive weights λi, the following inequality holds:

f

(∑
i λixi∑
i λi

)
≥
∑

i λif(xi)∑
i λi

, (19.38)

which roughly amounts to saying that the function of the weighted arguments must be
greater than or equal to the sum of the weighted function of the arguments. Applying this
inequality to the VNE by mapping λi ≡ ρi, xi ≡ 1/ρi, and the function f(xi) ≡ ln(1/ρi)
gives

S = −
∑
i

ρi ln ρi =
∑
i

ρi ln
1

ρi
≤ ln

∑
i ρi

1
ρi∑

i ρi
= lnN =⇒ S ≤ lnN , (19.39)
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where we used
∑

i ρi = 1 and
∑

i = N , N being the dimension of the Hilbert space of ρ.
We learn the important result that the maximum value of the VNE is lnN . It is now easy
to see that this maximum value comes about when ρi =

1
N
∀i, which is a maximally mixed

state. To see this, note that

S(ρi =
1

N
) = −

N∑
i=1

1

N
ln

(
1

N

)

=
N∑
i=1

1

N
ln(N)

=
N

N
ln(N) = ln(N) . (19.40)

A maximally mixed state is, thus, one in which all states appear with equal probability.
We can now infer that the more mixed a density matrix is, the more will be its VNE. On
the other hand, because a pure state is not mixed at all, we have seen that it’s VNE is
zero. Thus, you may be tempted into thinking that its entanglement entropy (EE) is 0 as
well. However, you need to be cautious here, as even a pure state can be entangled, and
therefore can possess a finite and non-zero EE obtained from a reduced density matrix for
a subsystem. We will see precisely this with the singlet state for the two spin-1/2 system in
the next section.

For now, we will go further with making connecting pure and mixed states with the idea of
entanglement, and especially entanglement entropy (EE). As an example, consider a separable
state for two quantum systems A and B that are both 2 level systems (i.e., both can have
two states |1⟩ and |2⟩)

|ψ⟩ =
∣∣1A〉⊗ (√ρ1 ∣∣1B〉+√ρ2 ∣∣2B〉) , (19.41)

with the corresponding density matrix ρAB being:

ρAB = |ψ⟩ ⟨ψ| =
∣∣1A〉 〈1A∣∣⊗ (ρ1 ∣∣1B〉 〈1B∣∣+ ρ2

∣∣2B〉 〈2B∣∣+√ρ1ρ2 ∣∣1B〉 〈2B∣∣+√ρ1ρ2 ∣∣2B〉 〈1B∣∣) .
(19.42)

Then, tracing out subsystem B will leave us with a pure state density matrix

ρA =
〈
1B
∣∣ ρAB ∣∣1B〉+ 〈2B∣∣ ρAB ∣∣2B〉

= (ρ1 + ρ2)
∣∣1A〉 〈1A∣∣ = |χ⟩ ⟨χ| = (1 0

0 0

)
(19.43)

(19.44)

where |χ⟩ =
√
ρ1 + ρ2

∣∣1A〉, and the cross terms (∝ √ρ1ρ2) vanish because of the orthogo-
nality condition ⟨αi|βj⟩ = δαβδij for (α, β) = (1, 2) and (i, j) = (A,B). It is now easy to
obtain the entanglement entropy as

SA = −
∑
j

ρj ln ρj = −1× ln(1)− 0× ln(0) = 0 . (19.45)
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Thus, separable states lead to pure state density matrices upon reduction, and the entangled
entropy from such pure state density matrices is zero.

Instead, if we start with a non-separable state |ψ⟩ = √ρ
1

∣∣1A〉 ∣∣1B〉 + √ρ
2

∣∣2A〉 ∣∣2B〉, the
corresponding density matrix obtained is

ρAB = |ψ⟩⟨ψ|
= ρ1

∣∣1A〉 〈1A∣∣1B〉 〈1B∣∣+ ρ2
∣∣2A〉 〈2A∣∣2B〉 〈2B∣∣

+
√
ρ1ρ2

(∣∣1A〉 〈2A∣∣1B〉 〈2B∣∣+ ∣∣2A〉 〈1A∣∣2B〉 〈1B∣∣) . (19.46)

Then tracing out subsystem B would leave us with:

ρA =
〈
1B
∣∣ ρAB ∣∣1B〉+ 〈2B∣∣ ρAB ∣∣2B〉

= ρ1
∣∣1A〉 〈1A∣∣+ ρ2

∣∣2A〉 〈2A∣∣ = (ρ1 0
0 ρ2

)
, (ρ1, ρ2 > 0) (19.47)

where the cross terms (∝ √ρ1ρ2) vanish because of the orthogonality condition ⟨αi|βj⟩ =
δαβδij for (α, β) = (1, 2) and (i, j) = (A,B). This is clearly a mixed state, and leads to an
EE given by

SA = −
∑
j

ρj ln ρj = −ρ1 ln ρ1 − ρ2 ln ρ2 ̸= 0 , (ρ1, ρ2 > 0) . (19.48)

Thus, non-separable, or entangled, states lead to mixed state density matrices upon reduction;
further, such mixed state density matrices obtain non-zero entanglement entropy. Also, the
entanglement entropy obtained from a reduced density matrix must also be bounded by 0
and ln(N) (where N is the dimension of the Hilbert space of the reduced density matrix),
just as we had observed earlier for the von Neumann entropy.

This establishes the connection between the notions and entanglement and separability of
states with the ideas of pure and mixed states. Further, it shows that entanglement reflects
on some kind of connectivity between different parts of a system within the eigenstates. In
this way, entanglement can be quantified by the entanglement entropy (EE). However, it is
worth noting that EE is only one measure of entanglement; there are many other quantitative
measures of entanglement that we will not discuss here.

The take home message: Entangled states will lead to mixed states upon reduction, and
the EE of such states will be non-zero. Separable states, on the other hand will produce
pure states upon reduction, and lead to vanishing EE.

19.6 Entanglement Entropy of the Singlet, and what

it tells us about Schrödinger’s Cat

We can now calculate the EE of the singlet ground state of the Heisenberg Hamiltonian
for two spins A and B, and hence quantify its entanglement content. The eigenstate is
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|ψ⟩AB = 1√
2
(|↑A⟩ |↓B⟩ − |↓A⟩ |↑B⟩). The corresponding density matrix is given by

ρAB =
1

2
(|↑A⟩ |↓B⟩ − |↓A⟩ |↑B⟩) (⟨↑A| ⟨↓B| − ⟨↓A| ⟨↑B|) . (19.49)

The reduced density matrix for spin A (obtained upon tracing out spin B) is

ρA = ⟨↑B| ρAB |↑B⟩+ ⟨↓B| ρAB |↓B⟩ =
1

2
(|↑A⟩ ⟨↑A|+ |↓A⟩ ⟨↓A|) =

(
1
2

0
0 1

2

)
, (19.50)

where the other terms identically vanish as ⟨↑B | ↓B⟩ = 0 = ⟨↓B | ↑B⟩. The reduced density
matrix ρA clearly corresponds to a maximally mixed denisty matrix whose weights are given
by ρAi = 1/N , with N = 2 being the dimension of the SU(2) Hilbert space (i.e., the Hilbert
space of the spin-1/2 degree of freedom). The EE is then found to be

SA = −
∑
i

ρi ln ρi = 2× 1

2
ln 2 = ln 2 . (19.51)

In this way, we see that the singlet has the maximum possible entanglement, i.e., it is
maximally entangled. Also, it is quite obvious from the construction of the singlet state that
precisely the same result would be obtained if we were to trace out spin A, and obtain the
EE for spin B: SB = ln 2 = SA .

Furthermore, we have learnt another important lesson: interactions between the con-
stituents of a system give rise to the entanglement of the many-constituent wavefunction.
We saw this here for the simplest case of two subsystems (i.e., the spins) that are interacting
with one another through the Heisenberg Hamiltonian.

We can now bring up an old gedanken to highlight the consequences what we have just seen.
Recall the Schrödinger’s cat gedanken we encountered a long time ago in these lectures.

Figure 19.3: A schematic diagram of the Schrödinger’s Cat thought experiment. See dis-
cussion in text. Disclaimer: No such experiment has ever been carried out with a real cat!
Source: The internet.

153



A quick recapitulation. A cat is placed in an opaque box together with a radioactive source,
a Geiger counter that can detect the radioactivity and a vial of poison gas. Any radioactive
source has a well-defined lifetime, i.e., a definite fraction of the population of the atoms
will have undergone radioactive decay within the lifetime. The decay process is, however,
probabilistic; this means that at any given time, we can associate a probability that a given
atom will have undergone radioactive decay. Now, if during the time the cat is kept in the
box, the radioactive source undergoes decay, the Geiger counter will sense this and break
the vial of poison gas, killing the cat. Thus, upon opening the lid of the box, we will find
the cat to be dead. On the other hand, if the source does not decay, the cat will be alive
upon observation.

Now, it is easy to see that the state of the cat and that of the atom are entangled with one
another. Since the cat being alive or dead was contingent upon the radioactive state of an
atom (i.e., on whether it “has decayed” or “has not decayed”). Thus, the state of the full
“Cat + Atom” system can be written as

|ψCat+Atom⟩ =
1√
2
(|Cat Alive⟩|Atom not decayed⟩+ |Cat Dead⟩|Atom decayed⟩) .(19.52)

As both the Cat and the Atom have two states each, we can replace “Cat” by Spin 1 and
“Atom” by Spin 2. Then, the above is nothing but the triplet zero state

|S = 1, Sz = 0⟩ = 1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) , (19.53)

which is equally entangled a state as the singlet we discussed just above. By this we mean
that if we compute the reduced density matrix for the Cat by tracing over the two states of
the Atom, we will again receive the reduced density matrix given above in eq.(19.50) and
the entanglement entropy as shown in eq.(19.51). Thus, we can see that as long as the lid
of the box is closed, the cat and atom exist in an entangled state. We will discuss at a later
point what happens when we open the lid and make a measurement of the cat’s state.

19.7 The EPR Paradox

Some interesting history and related physics can be brought up. Schrödinger coined the word
“entanglement” for the phenomenon we have just observed, and noted that this was some-
thing very intrinsic to quantum mechanics. However, this very feature was also dubbed as a
“spooky action at a distance” type correlation between subsystems of a quantum mechanical
system by Einstein, Podolsky and Rosenberg (EPR). Thus, they came up with a gedanken
to highlight what they thought was a paradox. That is, they wanted to show just how weird
entanglement was, and proposed that nature just could not be this way. In keeping with our
discussion above of the entanglement within the singlet state for two interacting spin-1/2
degrees of freedom, we present David Bohm’s version of the EPR paradox below.

Consider the following. A system of two spin-1/2 angular momenta are coupled to one
another, such that they are initially placed in the singlet state ( 1√

2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)). Now,

send one of the spins (spin 1) off to (say) an observer A placed at x→∞ and the other (spin
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Figure 19.4: (Above) The EPR paradox with a spin singlet state. See text for discussion.
(Below) From left to right: Einstein, Podolsky and Rosen.

2) to an observer B placed at x→ −∞. Remember that we are assuming that, even as the
spins fly apart from one another, they remain in the entangled singlet state. (This amounts
to saying that there exists no mechanism that can spoil their being entangled through any
form of measurement, decoherence etc. even as they are flying apart.)

Now, let’s say that observer A receives her spin first (i.e., even before B has received his)
and takes a single measurement of the value of S1z. Given that the singlet state is not an
eigenstate of the individual S1z and S2z, she has a 50% chance of obtaining ⟨S1z⟩ = ℏ/2 and
50% chance of obtaining ⟨S1z⟩ = −ℏ/2. The same would have been true if observer B were
to obtain spin 2 first and make a measurement of ⟨S2z⟩. Further, this would also be true if
either of them were to receive their spin first and measure, say, ⟨S1x⟩ or ⟨S2x⟩.

However, any single measurement (rather than the expectation value) will cause the wave-
function of the coupled spin system to collapse onto one of its components, i.e., the initial
state 1√

2
(| ↑↓⟩ − | ↓↑⟩) will collapse to either | ↑↓⟩ or | ↓↑⟩. (We will offer more insight into

measurement and wavefunction collapse in a following section.) If both observers A and B
knew that the initial state of the two spins was a singlet, then A has received instantaneously
from her measurement not only the state of the spin she received (spin 1, here | ↑⟩), but also
the state of the spin she did not have (spin 2, here | ↓⟩)!

EPR noted that this was strange: A’s measurement of S1z would cause the collapse of not
only spin 1 onto (say) | ↑⟩, but also simultaneously (i.e., instantaneously) also cause the
collapse of spin 2 onto | ↓⟩ even though it was infinitely far away! Thus, it would appear
that information has travelled faster than the speed of light between the two spins so as to
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Figure 19.5: A schematic diagram of the probability for observations of the “Dead” and
“Alive” states in the Schrödinger’s Cat thought experiment by a classical observer who only
observes the state of the cat after a certain time interval T . In the EPR gedanken, replace
“Dead” by ⟨S1z⟩ = ℏ/2 and “Alive” by ⟨S1z⟩ = −ℏ/2 for measurements of ⟨S1z⟩ by observer
A on spin 1 prior to observer B receiving his spin.

collapse spin 2 into | ↓⟩ as the same instant as spin 1’s state collapsed into | ↑⟩. This, for
them, this showed the spooky action at a distance nature inherent within quantum mechanics.
Well, it got worse. As we shall see, the collapse of the state by observer A will severely affect
the measurements of observer B on spin 2.

Figure 19.6: A schematic diagram of the probability for observations of the “Dead” and
“Alive” states in the Schrödinger’s Cat thought experiment by continuous classical observa-
tions. In the EPR gedanken, replace “Dead” by ⟨S2z⟩ = ℏ/2 and “Alive” by ⟨S2z⟩ = −ℏ/2
for measurements of ⟨S2z⟩ by observer B on spin 2 after observer A has already measured
spin 1 (and observes ⟨S1z⟩ = −ℏ/2 and ⟨S1z⟩ = ℏ/2 respectively).

Imagine that observer B decides to measure either S2z or S2x (but only one of them at any
instant). Given that spin 2 has already collapsed onto | ↓⟩, then B will find ⟨S2z⟩ = −ℏ/2 will
absolute certainty (and not the half-half chance of finding ±ℏ/2 if A had not already made
her measurement)! Thus, it appears that information has travelled faster than light between
the two spins (and which are infinitely far away) so as to fix observer B’s spin (spin 2) into a
definite value (say, −ℏ/2) along an appropriately chosen axis (say, the z-axis). Further, if B
measures ⟨S2x⟩, then he has equal (i.e., half-half) chances of getting | →⟩ and | ←⟩. On the
other hand, if A had not measured her spin, then B’s measurements of either ⟨S2z⟩ or ⟨S2x⟩
would have yielded equal (i.e., half-half) chances of getting |↑⟩ , |↓⟩ or |→⟩ , |←⟩ respectively.
Further, EPR also worried about the fact that observer A could, having already obtained
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the information of the state of spin 2, convey the information to observer B even before he
could receive and measure it for himself!

How could all of this possibly be? Surely this defies the belief from the special theory of
relativity that information could not be conveyed between two systems (and their observers)
faster than the speed of light. Well, this effect has been tested in the laboratory between
photons (and over increasing distances, e.g., between the surface of the Earth and an orbit-
ing satellite) several times, and each time the entanglement has shown up! There have been
several further theoretical developments in quantum mechanics, e.g., Bell’s inequalities, to-
wards understanding whether this entanglement could be arising from a more deterministic
theory (the so called “hidden variables” theory) that remains unknown to us. However, all
of these theoretical proposals have also been tested experimentally, and they all show (i) no
signs of any hidden underlying theory and (ii) that the entanglement inherent in quantum
mechanics is very much present and real. Indeed, the Nobel prize in Physics for 2022 was
awarded to Alain Aspect, John F. Clauser and Anton Zeilinger for “for experiments with
entangled photons, establishing the violation of Bell inequalities and pioneering quantum
information science”.

Figure 19.7: (Above) From left to right: Alain Aspect, John F. Clauser and Anton Zeilinger.
They were awarded the Nobel prize for Physics in 2022 for their pioneering work on quantum
entanglement.

We also understand that it is not possible for observers A and B to communicate among
themselves the states of each other spins even before the second of them receives theirs, i.e.,
the foreknowledge of the state of both spins by the first of the observers cannot be shared
with the second prior to that person receiving their spin. There is thus no violation of the
special theory of relativity. I am sure that you will learn more about this in further courses
in quantum mechanics.

19.8 The 2-spins in the Presence of a Magnetic Field:

a toy model for a quantum phase transition

A few words on phase transitions.
You may have studied about phase transitions somewhere earlier, with water being used as a
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typical example to show the changes in the state of matter between solid (ice), liquid (water)
and gas (vapour) as temperature is raised from below T < 273K to above T > 373K. Recall
that these drastic changes in the phase (or state of matter) were driven by the increasingly
large affects of thermal energy (kBT ) being given to the water molecules as the temperature
T was raised, i.e., such “phase transitions” are driven by thermal fluctuations in the system.
The question we ask here is: can there be counterparts of such phase transitions in a quantum
system at T = 0? Certainly, such transitions would have to be observed by changing some
other parameter in the problem (instead of T ), and would be driven by quantum (rather
than thermal) fluctuations.

Recall that we have given a physical description to quantum fluctuations earlier in these
lectures in terms of the zero-point energy that we observed in simple quantum systems such
as the particle in a box and the simple harmonic oscillator; in both of those cases, quantum
fluctuations/zero point energy was responsible for the non-zero ground state energy. In a
quantum system with a thermodynamically large number of constituents who are interacting
one another, such zero point energy (or quantum fluctuations) can even drive a phase tran-
sition at T = 0. What is the typical signature of such a quantum phase transition?b This is
easily seen from the following argument. We note that all thermal phase transitions can be
captured by noting the existence of some kind of singular behaviour in the thermodynamic
free energy F

F = E + TS, (19.54)

where E is the internal energy of the system (described by it’s Hamiltonian’s ground state
eigenvalue), S is the thermal entropy and T is the temperature. The singular behaviour is
typically observed in the discontinuous behaviour of either the first or some higher derivative
of the free energy F with respect to T or some other parameter (such as an external magnetic
field for the case of magnetism).

At T = 0, the free energy is simply F ≡ E, and we can easily see that a quantum phase
transition must be signalled in some form of singular behaviour in E. The simplest form
of a quantum phase transition corresponds to a discontinuous behaviour in E (or one of its
derivatives) as some parameter in the quantum Hamiltonian is varied. We will now study
such behaviour in a simple toy model.

The toy model.
Recall that we had studied earlier the problem of two spin-1/2 degrees of freedom interacting
via an antiferromagnetic Heisenberg spin exchange. The more general Heisenberg problem
consists of two interacting spins placed in a magnetic field

H = λS⃗1 · S⃗2 +B (S1z + S2z) , (19.55)

where we have assumed that λ > 0 (antiferromagnetic spin exchange coupling) and the
magnetic field (B) points along the z-direction (but its sign can be either positive or negative).
The magnetic term corresponds to a Zeeman coupling between the total magnetisation of the
system ((S1z + S2z)) and the external B field. This Hamiltonian can again be diagonalised
easily. Using S± = Sx ± iSy, the Hamiltonian can be written as

S⃗1 · S⃗2 =
∑

i={x,y,z}

S1iS2i = S1zS2z +
1

2
(S1+S2− + S1−S2+) (19.56)

158



We can now write the matrix elements in the basis of S1z, S2z.

H =



|↑1, ↑2⟩ |↑1, ↓2⟩ |↓1, ↑2⟩ |↓1, ↓2⟩
1
4
λ+B 0 0 0

0 −1
4
λ 1

2
λ 0

0 1
2
λ −1

4
λ 0

0 0 0 1
4
λ−B

 (19.57)

The Hamiltonian has three decoupled blocks; the top left and bottom right form two diagonal
blocks, while the middle 2× 2 matrix forms the third block which is internally off-diagonal.
Since the top left and bottom right blocks are diagonal, we can immediately write down two
of the four eigenstates and eigenvalues as:

H |↑1, ↑2⟩ =
(
1

4
λ+B

)
|↑1, ↑2⟩

H |↓1, ↓2⟩ =
(
1

4
λ−B

)
|↓1, ↓2⟩

(19.58)

The middle block can be easily diagonalised (and has been done earlier). The eigenstates
are

H
1√
2
(|↑1, ↓2⟩+ |↓1, ↑2⟩) =

1

4
λ

1√
2
(|↑1, ↓2⟩+ |↓1, ↑2⟩)

H
1√
2
(|↑1, ↓2⟩ − |↓1, ↑2⟩) = −

3

4
λ

1√
2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)

(19.59)

E(ℏ = 1) |Ψ⟩ S Sz

−3
4
λ 1√

2
(|↑1, ↓2⟩ − |↓1, ↑2⟩) 0 0

1
4
λ 1√

2
(|↑1, ↓2⟩+ |↓1, ↑2⟩) 1 0

1
4
λ+B |↑1, ↑2⟩ 1 1

1
4
λ−B |↓1, ↓2⟩ 1 -1

Table 19.2: Spectrum of Heisenberg Hamiltonian in presence of B⃗

The first distinction from the B = 0 case is that the magnetic field breaks the degeneracy of
the triplet states (recall that we have also encountered this earlier in our discussion of the
ferromagnetic Heisenberg spin exchange problem). The more important effect of the field,
however, is that we can now tune the ground state of the system by varying the value of
B. For concreteness, let us consider first the case of B being positive (and comment on the
case of B < 0 later). For B > 0, the two lowest eigenvalues are −3

4
λ corresponding to the

singlet ( 1√
2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)), and 1

4
λ−B corresponding to |↓1, ↓2⟩. The energy difference

between these two states

∆Egap = E|↓1↓2⟩ − E 1√
2
(|↑1,↓2⟩−|↓1,↑2⟩) = λ−B . (19.60)
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As shown in Fig.19.8, for B < B∗ ≡ λ, the singlet ( 1√
2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)) is still the ground

state (with energy Eg = −3λ/4) and the gap is finite and positive, ∆Egap > 0. However, if we
tune the magnetic field above this value, then the ground state suddenly changes to the |↓1, ↓2⟩
state (with Eg = λ/4−B). This level-crossing between the | ↓1↓2⟩ and 1√

2
(|↑1, ↓2⟩ − |↓1, ↑2⟩)

states marks a zero-temperature zero-dimensional quantum transition between the singlet
and the triplet down states, with there being a degeneracy (i.e., ∆Egap = 0) precisely at the
transition. While the ground state energy (Eg) changes smoothly across B = B∗, the deriva-
tive (∂Eg/∂B)|B=B∗ undergoes an abrupt change across this point (from (∂Eg/∂B)|B<B∗ = 0
to (∂Eg/∂B)|B>B∗ = −1). In this way, the observed level crossing here is a simple toy model
for the quantum phase transitions that are studied by experimentalists and theorists in more
complex problems. Note that for B < 0, precisely the same level crossing phenomenon is
encountered between the | ↑1↑2⟩ and 1√

2
(|↑2, ↓2⟩ − |↓1, ↑2⟩) states at B∗ = −λ. This is also

shown in in Fig.19.8.

Figure 19.8: Variation of all four eigenvalues with the magnetic field, for λ = 2. There is
a quantum transition at the critical value B∗ = λ, where the ground state changes from
S = 0, Sz = 0 to S = 1, Sz = −1.

We can also track the transition by monitoring the entanglement of the ground state. For
B < B∗ ≡ λ, the ground state is a singlet, so the entanglement entropy (EE) of the reduced
density matrix (with respect to either the first or the second spin) will be ln 2. As we cross
the critical magnetic field, the new ground state (|↓1, ↓2⟩ is a separable state and will hence
have zero EE.

S1 = Tr [ρ1 ln ρ1] =

{
ln 2, B < B∗ ≡ λ

0, B > B∗ ≡ λ
(19.61)
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Figure 19.9: Variation of entanglement entropy S1 with the external magnetic field B. The
transition at B = B∗ is visible as S1 undergoes a sudden lowering in value from ln 2 for
B < B∗ to 0 for B > B∗.

An effective theory for the transition.
We can even go one step further, and obtain an effective understanding of the transition in
terms of only the states that undergo the level crossing transition. For this, we first define
the effective subspace of the singlet and triplet down states undergoing the transition as
follows

|↑̃⟩ = 1√
2
(| ↑1↓2⟩ − | ↓1↑2⟩) , |↓̃⟩ = | ↓1↓2⟩ , ⟨↑̃|↓̃⟩ = 0 . (19.62)

Then, we define the effective spin-1/2 operators that act on only this subspace of two states
as follows

S̃z = (S1,z + S2,z + ℏ
I
2
) , S̃+ =

1√
2
(S1,+ − S2,+) , S̃− =

1√
2
(S1,− − S2,−) . (19.63)

We can easily see that

S̃z|↑̃⟩ =
ℏ
2
|↑̃⟩ , S̃z|↓̃⟩ = −

ℏ
2
|↓̃⟩ , (19.64)

S̃+|↓̃⟩ = ℏ|↑̃⟩ , S̃−|↑̃⟩ = ℏ|↓̃⟩ , (19.65)

S̃+|↑̃⟩ = 0 = S̃−|↓̃⟩ . (19.66)

Now, we can construct the effective Hamiltonian Heff governing the quantum phase transi-
tion from the following four matrix elements

⟨↑̃|H|↑̃⟩ = −3λ

4
, ⟨↓̃|H|↓̃⟩ = (

λ

4
−B) , (19.67)

⟨↑̃|H|↓̃⟩ = 0 = ⟨↓̃|H|↑̃⟩ , (19.68)

to write

Heff =

(
−3λ

4
0

0 (λ
4
−B)

)
= aσ̃z + bI , (19.69)
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where a, b are constants to be determined, σ̃z = 2
ℏ S̃z and I is the 2 × 2 identity matrix.

Solving for a and b, we obtain

a = −1

2
(λ−B) ≡ −1

2
∆Egap , b = −1

4
(λ+B) . (19.70)

Thus, we can write the effective Hamiltonian as

Heff = −
∆Egap

ℏ
S̃z −

1

4
(λ+B)I . (19.71)

The effective Hamiltonian can be seen to take the form of a simple Zeeman-like coupling
between an effective external field (∆Egap) and the effective spin-1/2 degree of freedom given
by S̃z. From this effective Hamiltonian, we can see that tuning the external B-field leads to
the vanishing of ∆Egap at the quantum critical point B ≡ B∗ = λ, such that the effective
Hamiltonian for the two degenerate levels (|↑̃⟩ and |↓̃⟩) at the critical point is simply a
constant given by

HQCP
eff = Heff |B=λ = −

1

4
(λ+B)I . (19.72)

In this way, we have been able to obtain the effective low-energy theory for the quantum
transition in this simple model. It is worth noting that physicists working in the fields of
statistical physics, condensed matter physics, high energy physics, cosmology and even string
theory spend a fair bit of their time obtaining the effective low-energy theory for the quantum
phase transitions that appear in more complicated quantum systems with many interacting
constituents. They have to use techniques (e.g., the renormalisation group) from quantum
field theory, many-body theory and quantum statistical field theory to make progress with
their goal, but their aim is pretty much the same: find a way to obtain the effective theory
that governs the physics of the relevant degrees of freedom within the system that undergo
the quantum phase transition. Furthermore, they also want to obtain from their effective
theories insights into the emergence of novel collective states of quantum matter from the
inter-constituent interactions, e.g., magnetism, superconductors, insulators of various kinds,
protons, neutrons and much more!

19.9 Wavefunction Collapse, Measurement and Pro-

jection

We can use our discussion of the 2-spin problem to make some remarks about making
measurements and wavefunction collapse. Recall that we saw earlier in the Schrödinger cat
gedanken that the state of the full “Cat + Atom” system can be written as

|ψCat+Atom⟩ =
1√
2
(|Cat Alive⟩|Atom not decayed⟩+ |Cat Dead⟩|Atom decayed⟩) .(19.73)

As both the Cat and the Atom have two states each, we can replace “Cat” by Spin 1 and
“Atom” by Spin 2. Then, the above is nothing but the triplet zero state

|S = 1, Sz = 0⟩ = 1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) , (19.74)
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which is a maximally entangled state, i.e., tracing over all states of the Atom gives us a
reduced density matrix that shows maximal mixed nature. Now, consider that you have a
switch by which to either (i) stop altogether the Atom from decaying or (ii) force the Atom
to decay instantaneously. It is clear that if we flip the switch to the first case (i.e., stop
altogether the Atom from decaying), then the Cat is alive for all times. On the other hand,
if we flip the switch to the second case (i.e., force the Atom to decay instantaneously), the
Cat is then dead thereafter for all times. But surely, each of these events has “collapsed the
state” of the Cat and Atom system from the above superposition, 1√

2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩)),

to either | ↑1⟩| ↓2⟩ or | ↓1⟩| ↑2⟩.

But how do we study such a collapse of the state? The simplest way to model it is to define
the following two projection operators (in terms of outer products) of the orthonormal states
| ↑1⟩| ↓2⟩ and | ↓1⟩| ↑2⟩

P1 = | ↑1⟩| ↓2⟩⟨↑1 |⟨↓2 | , P2 = | ↓1⟩| ↑2⟩⟨↓1 |⟨↑2 | , (19.75)

such that, by acting on the normalised eigenstate 1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) with P1 and P2,

we can obtain

|ψ1⟩ = P1
1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) (19.76)

= | ↑1⟩| ↓2⟩⟨↑1 |⟨↓2 |
1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) (19.77)

|ψ1⟩ =
1√
2
| ↑1⟩| ↓2⟩ (as ⟨↑1 |⟨↓2 | ↓1⟩| ↑2⟩ = 0) , (19.78)

|ψ2⟩ = P2
1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) (19.79)

= | ↓1⟩| ↑2⟩⟨↓1 ⟨↑2 |
1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩) (19.80)

|ψ2⟩ =
1√
2
| ↓1⟩| ↑2⟩ (as ⟨↓1 |⟨↑2 | ↑1⟩| ↓2⟩ = 0) . (19.81)

Thus, as shown in Fig.19.10, we have obtained the collapse of the wavefunction from the
triplet zero state to the individual components, but at a price. Note that the norm of the
wavefunction is affected during the projection process. This can be seen by noting that

⟨ψ1|ψ1⟩ = ⟨ψ2|ψ2⟩ =
1

2
< 1 , (19.82)

even though the triplet zero state we started from was normalised. This indicates that the
application of the projection is a non-unitary process, i.e., this transformation process does
not preserve the norm of the state, and cannot be described by any unitary evolution of the
original state we started with (see discussions of eqs.(5.7) - (5.9) in Chapter 5).

Once the projection has been carried out using either P1 or P2, then it can be shown that

P1|ψ1⟩ = |ψ1⟩ = P 2
1 |ψ1⟩ ,

P1|ψ2⟩ = 0 = P2|ψ1⟩ ,
P2|ψ2⟩ = |ψ2⟩ = P 2

2 |ψ2⟩ . (19.83)
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These relations indicate that the operators P1 and P2 keep us within the subspace of states
|ψ1⟩ and |ψ2⟩, and with eigenvalues 1 and 0.

Further, it is easily seen that the addition of probabilities obtained from the projections P1

and P2 add up to 1. This is simply because we can define a “total” projection operator
P = P1 + P2 such that

P
1√
2
(| ↑1⟩| ↓2⟩ ± | ↓1⟩| ↑2⟩) = (P1 + P2)

1√
2
(| ↑1⟩| ↓2⟩ ± | ↓1⟩| ↑2⟩)

= (| ↑1⟩| ↓2⟩⟨↑1 |⟨↓2 |+ | ↓1⟩| ↑2⟩⟨↓1 |⟨↑2 |)
1√
2
(| ↑1⟩| ↓2⟩ ± | ↓1⟩| ↑2⟩)

=
1√
2
(| ↑1⟩| ↓2⟩ ± | ↓1⟩| ↑2⟩) . (19.84)

Thus, we see that the eigenvalue of P acting on the triplet zero and singlet states is 1, i.e.,
it preserves the state and its norm. On the other hand,

P | ↑1↑2⟩ = (P1 + P2)| ↑1↑2⟩
= (| ↑1⟩| ↓2⟩⟨↑1 |⟨↓2 |+ | ↓1⟩| ↑2⟩⟨↓1 |⟨↑2 |)| ↑1↑2⟩
= 0 (as ⟨↑1 |⟨↓2 | ↑1↑2⟩ = 0 = ⟨↓1 |⟨↑2 | ↑1↑2⟩) (19.85)

= P | ↓1↓2⟩ . (19.86)

Thus, for the states | ↑1↑2⟩ and | ↓1↓2⟩ (i.e., the states that are orthogonal to the states from
which P is constructed), the eigenvalue of P is 0. In this way, we may think of P as acting
on the complete Hilbert space of | ↑1↑2⟩ and | ↓1↓2⟩, 1√

2
(| ↑1⟩| ↓2⟩ + | ↓1⟩| ↑2⟩) and 1√

2
(| ↑1

⟩| ↓2⟩ − | ↓1⟩| ↑2⟩), so as to project onto the subspace of the states 1√
2
(| ↑1⟩| ↓2⟩+ | ↓1⟩| ↑2⟩)

and 1√
2
(| ↑1⟩| ↓2⟩ − | ↓1⟩| ↑2⟩).

Very generally, it can be shown that the eigenvalues of a total projection operator such
as P can only be 1 and 0: the former for all the sub-basis of (say N) orthogonal states
({|i⟩} , i ∈ 1, . . . , N) from which it is composed, and the latter for all other states orthogonal
to that sub-basis. The eignevalue of 1 is simply telling us that, upon using P , the total
probability to find any one of the orthogonal states within the sub-basis in 1, and the
probability to find any other state lying outside the sub-basis 0. Pi, where (i ∈ (1, . . . , N)
are the sub-parts of P =

∑N
i=1 Pi, give us the individual states lying within {|i⟩}.
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Figure 19.10: The collapse of the quantum Wavefunction of the Cat+Atom system to the
classical states of the Cat via projection operators P1 and P2. Source: the internet.

Thus, the classical states of the Cat obtained by projection correspond to a non-unitary
process applied to the original quantum state of the Cat + Atom system. Certainly, all
entanglement encoded between the states of the Cat and the Atom in the original quantum
state has been lost during the projection operation.

Note that had we started with a direct product state |ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2, then using the
projection operators P1 = |ψ⟩1 ⟨ψ|1 and P2 = |ψ⟩2 ⟨ψ|2 leads to

|Ψ⟩1 = P1 |ψ⟩
= |ψ⟩1 ⟨ψ|1 |ψ⟩1 ⊗ |ψ⟩2
= |ψ⟩1 ⊗ |ψ⟩2 , (19.87)

|Ψ⟩2 = P2 |ψ⟩
= |ψ⟩2 ⟨ψ|2 |ψ⟩2 ⊗ |ψ⟩1
= |ψ⟩1 ⊗ |ψ⟩2 . (19.88)

Thus, we see that |Ψ⟩1 = |ψ⟩ = |Ψ⟩2, i.e., the action of the projection operators P1 and P2

does not change the original state in any way! Thus, projections on Hilbert spaces that are
already independent does not lead to the generation of loss of unitarity.

It is worth noting that the switch we developed towards forcing the quantum states of the
Schrödinger cat gedanken into classical states is just a thought device for illuminating a
more general concept dealing with measurements that we make on quantum systems. In the
original Schrödinger’s cat gedanken, the measurement was made by opening the lid of the
box and noting the state of the cat by an observer; here, we have replaced this process by
the activation of a switch. If we consider that there are many copies of the gedanken, in
which each copy has its own switch and each switch has an equal probability to take either
case (i) or case (ii), we will again obtain a probability distribution for the cat being alive
or dead being 1/2 and 1/2 for dead and alive. In this way, the discussion of the outcomes
obtained from the gedanken with the switch is completely equivalent to that where we need
to open the lid and measure the state of the cat.

We believe, in all generality, that the process of making measurements on quantum systems
leads to the collapse of the quantum wavefunction (typically, a linear superposition of many
classical states/outcomes) onto a particular classical state/outcome. Further, we believe that
such measurements, and the wavefunction collapses they enforce via projection operations,
are always non-unitary in nature. Thus, encoding them via the unitary evolution in time
of a Hamiltonian may not, in general, be possible. Further, such a non-unitary projection
is irreversible (i.e., the measurement cannot be reversed by doing something to the classical
states, and the original quantum state reversed). This is, thus, one way of visualising how
the classical world “emerges” from the quantum world.
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19.9.1 Measurement, Symmetry breaking and non-unitarity

A final word on wavefunction collapse and symmetries. Recall that we have shown earlier
(see eq.(6.11)) that all symmetries of a Hamiltonian (and therefore its eigenstates) are pre-

served in time under unitary time evolution (i.e., using the operator U = e−
iĤt
ℏ ). Thus, we

should not expect that symmetries will necessarily be preserved under the application of
projection operators that are non-unitary, i.e., such operations may violate the symmetries
of the system.

In order to see how this happens, let us consider a variation of an earlier problem we have
studied. Take the Heisenberg problem of two interacting spin 1/2s in a staggered magnetic
field

H = λS⃗1 · S⃗2 + B̃ (S1z − S2z) , (19.89)

where we have assumed that λ > 0 (antiferromagnetic spin exchange coupling) and the
staggered magnetic field (B̃) points along the z-direction (but its sign can be either positive
or negative). The magnetic term corresponds to a Zeeman coupling between the total stag-
gered magnetisation of the system ((S1z − S2z)) and the external B̃ staggered field. This
Hamiltonian can again be diagonalised easily. Using S± = Sx± iSy, the Hamiltonian can be
written as

S⃗1 · S⃗2 =
∑

i={x,y,z}

S1iS2i = S1zS2z +
1

2
(S1+S2− + S1−S2+) (19.90)

We can now write the matrix elements in the basis of S1z, S2z.

H =



|↑1, ↑2⟩ |↑1, ↓2⟩ |↓1, ↑2⟩ |↓1, ↓2⟩
1
4
λ 0 0 0

0 −1
4
+ B̃λ 1

2
λ 0

0 1
2
λ −1

4
+ B̃λ 0

0 0 0 1
4
λ

 (19.91)

The Hamiltonian has three decoupled blocks; the top left and bottom right form two diagonal
blocks, while the middle 2× 2 matrix forms the third block which is internally off-diagonal.
Since the top left and bottom right blocks are diagonal, we can immediately write down two
of the four eigenstates and eigenvalues as:

H |↑1, ↑2⟩ =
1

4
λ |↑1, ↑2⟩

H |↓1, ↓2⟩ =
1

4
λ |↓1, ↓2⟩

(19.92)

The middle block can be written as

H̃ =

(
⟨↑1↓2 |H| ↑1↓2⟩ ⟨↑1↓2 |H| ↓1↑2⟩
⟨↓1↑2 |H| ↑1↓2⟩ ⟨↓1↑2 |H| ↓1↑2⟩

)
=

λℏ2

2

(
0 1
1 0

)
− λℏ2

4

(
1 0
0 1

)
+ B̃

(
1 0
0 −1

)
=

λℏ2

2
σx −

λℏ2

4
I + B̃σz . (19.93)
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The diagonalisation of H̃ gives us

E+ = −λℏ
2

4
+

√
B̃2 +

λ2ℏ4
4

, |ψ⟩+ = N+(
λℏ2

2
| ↑1↓2⟩+ (−λℏ

2

4
+ B̃ − E+)| ↓1↑2⟩)

E− = −λℏ
2

4
−
√
B̃2 +

λ2ℏ4
4

, |ψ⟩− = N−((−
λℏ2

4
+ B̃ − E−)| ↑1↓2⟩+

λℏ2

2
| ↓1↑2⟩) ,(19.94)

where N± =
[
(λℏ

2

2
)2 + (−λℏ2

4
+ B̃ − E±)

2
]−1/2

. This can be summarised in tabular form as

follows

E(ℏ = 1) |Ψ⟩

E+ = −λℏ2
4

+
√
B̃2 + λ2ℏ4

4
|ψ⟩+ = N+(

λℏ2
2
| ↑1↓2⟩+ (−λℏ2

4
+ B̃ − E+)| ↓1↑2⟩)

E− = −λℏ2
4
−
√
B̃2 + λ2ℏ4

4
|ψ⟩− = N−((−λℏ2

4
+ B̃ − E−)| ↑1↓2⟩+ λℏ2

2
| ↓1↑2⟩)

1
4
λ |↑1, ↑2⟩

1
4
λ |↓1, ↓2⟩

Table 19.3: Spectrum of Heisenberg Hamiltonian in presence of a staggered field B̃

Check: that for the case of B̃ = 0, we get back the eigenspectrum of the simple two
interacting spin-1/2 problem we had studied earlier.

Now, it can be seen that for any |B̃| > 0, the spin rotational symmetry of the singlet and
triplet zero states 1√

2
(|↑1↓2⟩ ∓ |↓1↑2⟩) (eigenstates of Sz = S1z + S2z with eigenvalue 0) is

manifestly broken. This is seen simply from the fact that the weight factors in front of
the |↑1↓2⟩ and |↓1↑2⟩ components of |ψ⟩± are not equal any more, meaning that these two

states are no longer eigenstates of Sz = S1z + S2z. In fact, as we tune |B̃|, either |↑1↓2⟩ or
|↓1↑2⟩ are increasingly weighted over another.

The connection with measurement via (non-unitary) projection operators is observed by
taking the limit of |B̃| → ∞. For B̃ →∞, the state |↓1↑2⟩ becomes the eigenstate, while for
B̃ → −∞, |↑1↓2⟩ is the eigenstate. We can thus mimic the projection mechanism (i.e., the
application of the projection operators P1 = | ↑1⟩| ↓2⟩⟨↑1 |⟨↓2 | and P2 = | ↓1⟩| ↑2⟩⟨↓1 |⟨↑2 |
by taking the limit of |B̃| → ∞. The non-unitary nature of the projection mechanism
lies in the observation that there exists no unitary transformation can map the eigenstates
|ψ⟩± (observed for |B̃| ̸= 0) onto the eigenstates at B̃ = 0 ( 1√

2
(|↑1↓2⟩ ∓ |↓1↑2⟩)). Another

way of saying this is: there is no way connect the symmetry broken Hamiltonian (i.e., with
|B̃| ̸= 0) to the symmetry preserved Hamiltonian at B̃ = 0 via unitary transformations.
The “classical” states |↓1↑2⟩ and |↑1↓2⟩ are achieved upon taking the limit of |B̃| → ∞;
the journey towards the limit is the “emergence of the classical world” from the world of
quantum mechanics.
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19.10 The Qubit and quantum information processing

A final quick word on the basic building block of quantum information science: the qubit (or
quantum mechanical bit). This is actually nothing but the two-level (or spin-1/2) system
we have been studying all along! Recall that the most general state for the spin-1/2 system
we can write down is

|ψ⟩ = a| ↑⟩+ b| ↓⟩ , (19.95)

where a, b ∈ C and |a|2 + |b|2 = 1. Indeed, if we think of | ↑⟩ ≡ |1⟩ and | ↓⟩ ≡ |0⟩ (where
|0⟩ and |1⟩ are the states of a bit, the elementary unit of classical information), we can see
that |ψ⟩ is already a generalisation of the classical bit. A vectorial representation can be
given in terms of the Bloch sphere (see Fig.19.11). This is done by taking a = cos(θ/2),
b = sin(θ/2)eiϕ (in terms of the polar angles (θ, ϕ) made by the vector |ψ⟩ anywhere on the
surface of a sphere of unit radius), such that

|ψ⟩ = cos(θ/2)| ↑⟩+ sin(θ/2)eiϕ| ↓⟩ . (19.96)

Figure 19.11: The qubit represented on the Bloch sphere. The north and south poles
represent the |1⟩ ≡ | ↑⟩ and |0⟩ ≡ | ↓⟩ elements of the classical bit. The vector |ψ⟩
has length

√
3/4ℏ, and lies on the surface of a sphere, and defined by the polar angles

(0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π). Source: the internet.

A quantum computer (or more appropriately, a quantum information processor) is made out
of a large number of such two-state systems. For a system of N qubits, the Hilbert space is
comprised of 2N vectors; note that such a Hilbert space grows exponentially with N. Very
generally, the state of such a quantum computer can be written as

|ΨNqubits⟩ = ⊗Nj=1(aj| ↑j⟩+ bj| ↓j⟩)
= (a1a2 . . . aN) |↑⟩1 ⊗ |↑⟩2 . . . |↑⟩N

+ (a1a2 . . . aN−1bN) |↑⟩1 ⊗ |↑⟩2 . . . |↑⟩N−1 |↓⟩N + . . . , (19.97)

where {aj, bj} ∈ C, and the ⊗ symbol denotes a direct product of the N linear combinations
of single-qubit superposition states. This product form demonstrates the power of the par-
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allelism involved in the way the quantum computer works: as can seen from the second line
above, any algorithm working on such a quantum processor will running on a huge number
of initial starting ”classical” combinations of | ↑⟩s and | ↓⟩ bits (e.g., |↑⟩1⊗|↑⟩2 . . . |↑⟩N−1 |↓⟩N
etc.) given by the set of coefficients {aj, bj} (e.g., a1a2 . . . aN−1bN etc.). Thus, a huge number
of ”classical” outcomes are generated during the operation of the algorithm, and the final
measurement gives one of them as the output to the task.

This oracular (or “know it all”) nature of a quantum computer is what gives it a likely
advantage over a classical computer at certain tasks, e.g., factorisation of a huge number its
into prime factors. Indeed, this particular example is known to be a very difficult task for
classical computers (i.e., it takes a huge amount of time to get the prime factors), and the
reason why the RSA algorithm for encryption of data passed over the internet works so well.
Shor’s algorithm for prime factorisation on a quantum computer offers a massive advantage,
and its implementation on large scale quantum computers could well change our outlook on
information technology, encryption etc.
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Chapter 20

Quantum Particle On a Ring (QPOR)
Problem

20.1 The importance of boundary conditions

At several points in these lectures, we have encountered the important role played by bound-
ary conditions in determining the nature of the eigenvectors and eigenvalues for a given
problem in quantum mechanics. Recall, for instance, the particle in a box problem. There,
the imposition of the boundary conditions that the wavefunction must vanish at the box
walls (i.e., clamped boundary conditions), say ψ(x = 0) = 0 = ψ(x = a), dictated the fact
that we had standing wave type solutions analogous to the harmonics of a pipe. Further,
recall that in the simple harmonic oscillator problem, even though the potential is overall
confining, the fact that we had open boundary conditions meant that ψ(x→ ±∞)→ 0. This
immediately led to the fact that the quantum wavefunction penetrated into the (classically
forbidden) barrier regions. Also, recall that in the scattering problems, the absence of any
confining potentials meant that we were working with travelling wave solutions ψ ∝ e±ikx.
For open boundary conditions, this meant that the normalisation of such solutions would
have to be considered carefully, but we are always going to have to work with travelling
waves. Certainly, it becomes clear that the boundary conditions determine the nature of the
eigenspectrum.

In carrying this idea further forward, in this chapter we are going to study the problem of
a quantum particle whose motion is confined to a circle. Here, we will encounter another
type of boundary condition: the periodic boundary condition. Actually, we already saw an
example of this when we encountered the Φ(ϕ) angular part of the wavefunction for the
H-atom problem. Now, we will see how the entire eigenspectrum of the problem can be
sensitive to small changes in boundary conditions, i.e., the phenomenon of spectral flow. But
before doing so, we are going to show another way in which boundary conditions can have a
crucial role. Consider the linear momentum operator, p̂x = −iℏ∂/∂x. We believe that this
operator is Hermitian, and it should be, as it corresponds to an experimentally observable
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quantity. Let us then verify that this operator is indeed Hermitian. For this, we check∫ x2

x1

dxψ∗
2(x)p̂xψ1(x) =

∫ x2

x1

dxψ∗
2(x)− iℏ

∂

∂x
ψ1(x) , (20.1)

= −iℏψ∗
2(x)ψ1(x)|x2x1 + iℏ

∫ x2

x1

dx
∂ψ∗

2(x)

∂x
ψ1(x) , (int. by parts)(20.2)

= iℏ
∫ x2

x1

dx
∂ψ∗

2(x)

∂x
ψ1(x) , (20.3)

=
{∫ x2

x1

dxψ∗
1(x)

[
− iℏ∂ψ2(x)

∂x

]}∗
, (20.4)

where we have assumed that
−iℏψ∗

2(x)ψ1(x)|x2x1 = 0 , (20.5)

in order to establish the Hermiticity of the linear momentum operator p̂x = −iℏ∂/∂x. Thus,
p̂x is Hermitian if its eigenvector space consists of functions for whom the surface term
eq.(20.5) vanishes. Certainly, wavefuctions arising from clamped boundary conditions satisfy
this criteria, as do those wavefunctions ψ(x → ±∞) → 0 arising from open boundary
conditions (e.g., in overall confining potentials). For scattering state wavefunctions of the
kind ψ ∝ e±ikx, the criteria can only be met if

e±ik1x × e−ik2x|∞−∞ = 0 . (20.6)

While this is clear for the case of k1 = k2, the product oscillates for k1 ̸= k2 and so it is unclear
what happens as x → ±∞. However, there is a way to obtain a definite (and satisfactory)
answer to this conundrum. It is called “regularisation”, and depends on a prescription which
says that for such functions, the limit of |x| → ∞ is defined to be the average over a large
interval:

lim
x→∞

e±ik1x × e−ik2x = lim
L→∞,∆→∞

1

∆

∫ L+∆

L

dx ei(k1−k2)x = 0 , if k1 ̸= k2 . (20.7)

This ensures that the linear momentum operator p̂x is again Hermitian on this space of
wavefunctions.

Another important case is that of the wavefunctions arising from periodic boundary condi-
tions, for which the boundary terms in eq.(20.5) vanish by construction. This is what we
will now study.

20.2 Hamiltonian, Eigenstates and Eigenvalues

Imagine a particle of mass M constrained to move on the circumference of a circle of radius
R. The motion can be described completely by the angular coordinate ϕ on the ring, where
ϕ ∈ [0, 2π]. The periodic boundary conditions on the eigenstates of this problem Ψ (ϕ)
dictate that

Ψ (ϕ) = Ψ (ϕ+ 2π) (20.8)
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That is, Ψm(ϕ) is required to be single-valued on the ring. Further, the angular momentum
conjugate to ϕ is

p̂ϕ = −iℏ
d

dϕ
(20.9)

such that [ϕ, pϕ] = iℏ. Note that the angular momentum operator p̂ϕ is clearly Hermitian,
as the surface term discussed above naturally vanishes in this problem

−iℏΨ∗
2Ψ1|2π0 = −iℏ[Ψ∗

2(2π)Ψ1(2π)−Ψ∗
2(0)Ψ1(0)] = 0 (as Ψ(0) = Ψ(2π)) . (20.10)

The Hamiltonian for this problem is simply

H = − ℏ2

2MR2︸ ︷︷ ︸
moment of inertia

d2

dϕ2 (20.11)

The time-independent Schrödinger equation is thus

HΨ(ϕ) = − ℏ2

2MR2

d2Ψ

dϕ2
= EΨ(ϕ) (20.12)

The eigenvalues and eigenfunctions are

Ψm (ϕ) =
1√
2π
eimϕ, m = 0,±1,±2, ...

Em =
ℏ2m2

2MR2

(20.13)

The quantum number m is the eigenvalue of the angular momentum pϕ, which makes sense
because the Hamiltonian is simply p2ϕ, and we would expect m to be a good quantum number

because the Hamiltonian commutes with pϕ. The factor of
√
2π is a normalization constant.∫ 2π

0

dϕ |Ψm|2 =
1

2π

∫ 2π

0

dϕ = 1 (20.14)

Classically, m > 0 corresponds to clockwise rotation and m < 0 to anti-clockwise rotation.
The expression for Em is very similar to the infinitely deep 1D square well, but the boundary
conditions on the eigenstates Ψm (ϕ) are different in this problem. Note that the number of
nodes in the real part of Ψm (ϕ) (as well as |Ψm (ϕ) |2) increase by 2 for ∆m = 1.

Figure 20.1: Plots of Im [Ψ] = sinϕ vs ϕ and dIm[Ψ]
dϕ

vs ϕ
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Note also the non-trivial topology of the system; there are two ways to go form any point on
the ring to any other. This is simply because the circle corresponds to a multiply-connected
geometry, and a surface of genus one (as it effectively encloses a hole). The latter statement
means that we cannot shrink a closed curve bigger than the size of the circle to a point, as
it will stop when it hits the circle.

20.3 Effect of Flux Insertion and Spectral Flow

At this point, we introduce a solenoidal flux
through the ”hole” of the ring, as follows.

B⃗ = ∇⃗ × A⃗,

Bz =

{
B, r ≤ Rin

0, r > Rin

(20.15)

This is satisfied by the vector potential

A⃗ = Arêr + Aϕêϕ + Az êz,

with Ar = Az = 0, and

Aϕ =

{
Br

2
, r ≤ Rin

BR2
in

2r
= Φ

2πr
, r > Rin

(20.16)

Note that while the charged particle will not feel the effects of the B-field on the ring
(R > Rin), it will nevertheless feel the vector potential A⃗ (as this extends everywhere).

Thus, the Hamiltonian for the charged particle with this non-trivial A⃗ is given by

H =
1

2M

(
pϕ −

e

c
A⃗
)2

=
1

2M

(
−iℏ 1

R

d

dϕ
− e

c

Φ

2πR

)2

=
ℏ2

2M

(
−i d

dϕ
− Φ

ℏ2πc
e

)2

=
ℏ2

2M

(
−i d

dϕ
− Φ

Φ0

)2

(20.17)

[Rule for minimal cou-
pling: Peierls substitution-
p⃗→ p⃗− e

c
A⃗, seen in Maxwell’s

laws itself with test charges,
and is a result of gauge
invariance.]

(Φ0 = ℏ2πc
e

= hc
e

is the
magnetic flux quantum.)

The solutions for this Hamiltonian are as follows. The wavefunction retains the same form:

Ψm(ϕ) = eimϕ, m = 0,±1,±2, ... (20.18)

while the energy eigenvalues are

Em(ϕ) =
ℏ2

2MR2

(
m− Φ

Φ0

)2

(20.19)
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That is, Em(Φ) is now a function of the ratio of the total magnetic flux Φ and the flux
quantum Φ0.

Figure 20.2: Differently colored lines represent the spectrum for different values of the flux.
As we tune the flux ratio Φ

Φ0
, the energy eigenvalues for a particular value of m move to

different values of energy. Since this occurs for all value of m, the entire spectrum appears
to “flow” forward. This is called spectral flow.

Note the extra parity symmetry at Φ = n
2
Φ0, nΦ0 and not otherwise. Also, note the doubly-

degenerate ground state at Φ = n
2
Φ0. To see the current flow in the ground state, we first

define the current density operator as j⃗ = c
e
∂H

∂A⃗
, where A⃗ = Φ

2πR
êϕ. Therefore,

−c∂E
∂Φ

= −c⟨Ψ
∣∣∣∣∂H∂Φ

∣∣∣∣Ψ⟩ = −c⟨Ψ
∣∣∣∣∣∂H∂A⃗ ∂A⃗

∂Φ

∣∣∣∣∣Ψ⟩ = −⟨Ψ
∣∣∣∣ce ∂H∂A⃗ e

2πR
êϕ

∣∣∣∣Ψ⟩ = − e

2πR
⟨ψ|jϕ|Ψ⟩

= − e

2πR

∫ 2π

0

dϕjϕ ≡ I

(20.20)
What this shows is that the measured current is proportional to the change in energy ∆E
of the quantum system to a small change ∆Φ of the external flux (response to an electro-
magnetic stimulus can arise from some ”stiffness” of the system). This current for the ground
state, for example, is called the persistent current of the ring.
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For the particle on a ring problem, the current turns out to be

I = −c∂Em
∂Φ

=
cℏ2

Φ0MR2

(
m− Φ

Φ0

)
(20.21)

For ∆Φ in the neighborhood of Φ = 0, the ground state current is Im=0 = 0.

Figure 20.3: The evolution of the ground state upon tuning the external flux Φ: The ground
state can have a non-zero m at finite Φ, suggesting that the ground state can have a non-zero
current.

20.4 The Field-Free Picture

Quantum mechanics allows for a unitary transformation on all observables and states:

U : Ω̂→ Ω̂′ = UΩ̂U−1

U : |Ψ⟩ → |Ψ⟩′ = U |Ψ⟩
(20.22)

The last definition implies ⟨Φ| → ⟨Φ|U−1. The transformation is such that matrix elements
(and hence expectation values) are left unchanged.

⟨Φ′| Ω̂′ |Ψ′⟩ = ⟨Φ|U−1UΩ̂U−1U |Ψ⟩ = ⟨Φ| Ω̂ |Ψ⟩ (20.23)

With this in mind, we can construct a unitary transformation to remove (”gauge out”) the

A⃗ from the Hamiltonian:

U(ϕ) = exp

(
− ie
cℏ

∫ Φ

0

A⃗ · d⃗l
)

= exp

(
−i Φ

Φ0

ϕ

)
(20.24)

such that the Hamiltonian transforms as

H → H ′ = UHU−1 = exp

(
−i Φ

Φ0

ϕ

)
ℏ2

2MR2

(
−i d

dϕ
− Φ

Φ0

)2

exp

(
i
Φ

Φ0

ϕ

)
(20.25)
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Because

exp

(
−i Φ

Φ0

ϕ

)
1

ℏ
pϕ exp

(
i
Φ

Φ0

ϕ

)
=

1

ℏ
pϕ +

Φ

Φ0

(20.26)

, the transformed Hamiltonian becomes

H ′ =
ℏ2

2MR2

(
−i d

dϕ
+

Φ

Φ0

− Φ

Φ0

)
= −i ℏ2

2MR2

d

dϕ
(20.27)

However, recall that a unitary transformation cannot change the energy eigenvalues:

H ′ |Ψ′⟩ = UHU−1U |Ψ⟩ = UH |Ψ⟩ = UE |Ψ⟩ = E |Ψ′⟩ (20.28)

What this means, is that even though we have removed the vector potential from the Hamil-
tonian, it still exists in the energy eigenvalues. This is because, while the transformation
has removed A⃗ from the Hamiltonian, it has also changed the boundary conditions of the
problem. The original boundary condition was

Ψ(ϕ+ 2π) = Ψ(ϕ) (20.29)

This has now become

Ψ′ (ϕ+ 2ϕ) = U(ϕ+ 2π)Ψ(ϕ+ 2π) = U(ϕ+ 2π)Ψ(ϕ) = exp

(
−2πi Φ

Φ0

)
U(ϕ)Ψ(ϕ)

= exp

(
−2πi Φ

Φ0

)
Ψ′(ϕ)

(20.30)

We call these the twisted boundary conditions. Consider the Möbius strip shown in Fig.20.4
below for how twisted boundary conditions affect the states Ψ.

Figure 20.4: The Möbius strip. Source: the internet.

Thus, the Ψ′(ϕ) consistent with these boundary conditions are

Ψ′
m(ϕ) = exp

[
i

(
m− Φ

Φ0

)
ϕ

]
, m ∈ Z (20.31)

because,

Ψ′ (ϕ+ 2π) = exp

[
i

(
m− Φ

Φ0

)
ϕ+ 2πim− 2πi

Φ

Φ0

]
= exp

[
−2πi Φ

Φ0

]
Ψ′(ϕ) (20.32)

Clearly,

− ℏ2

2MR2

d2

dϕ2
Ψ′
m (ϕ) =

ℏ2

2MR2

(
m− Φ

Φ0

)2

Ψ′
m (ϕ) (20.33)
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Thus, while we can remove the A⃗ from the Hamiltonian, it reappears in the boundary
conditions, and its (topological) effects on the energy spectrum (i.e., spectral flow) and
other observables remain unaffected.

Writing k = m − Φ
Φ0
,Ψk (ϕ) = exp (ikϕ) , we see that the phase picked up in a closed path

is given by

exp

(
−2πi Φ

Φ0

)
(20.34)

while the phase picked up moving on the circle from ϕ1 to ϕ2 is

∆ = − e

cℏ

∫ ϕ2

ϕ1

A⃗ · d⃗l = −2π

Φ0

∫ ϕ2

ϕ1

ΦR

2πR
dϕ = − Φ

Φ0

(ϕ2 − ϕ1) (20.35)

This extra phase is called the
Aharonov-Bohm phase. It is an
example of a geometric (”Berry”)
phase, and is purely dependent on the
non-trivial topology. The ”particle
on a ring” problem is also referred to
as the bound state Aharonov-Bohm
problem. In the original A-B expo-
sition, a solenoidal flux was placed
in a Feynman double-slit interference
experiment, with electrons in between
the slit and the screen. It was predicted
that the interference pattern would
change on changing the A-B flux.

For an electron through slit 1 (S1) (that is, above the solenoid), the probability amplitude is

|Ψ1⟩ → |Ψ′
1⟩ = exp

(
− ie
cℏ

∫ r⃗B

r⃗A

A⃗ · d⃗l
)
|Ψ1⟩ (20.36)

Similarly, for an electron through S2, the probability amplitude is

|Ψ2⟩ → |Ψ′
2⟩ = exp

(
− ie
cℏ

∫ r⃗B

r⃗A

A⃗ · d⃗l
)
|Ψ2⟩ (20.37)
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Thus, the total probability between the source (r⃗A) and a point on the screen (r⃗B) is

(⟨Ψ′
2|+ ⟨Ψ′

1|) (|Ψ′
2⟩+ |Ψ′

1⟩)

= ⟨Ψ′
1|Ψ′

1⟩+ ⟨Ψ′
2|Ψ′

2⟩+
quantum interference terms︷ ︸︸ ︷
⟨Ψ′

1|Ψ′
2⟩+ ⟨Ψ′

2|Ψ′
1⟩

= ⟨Ψ1|Ψ1⟩+ ⟨Ψ2|Ψ2⟩+ 2Re {⟨Ψ′
2|Ψ′

1⟩}

= ⟨Ψ1|Ψ1⟩+ ⟨Ψ2|Ψ2⟩+ 2Re

{
⟨Ψ2|Ψ1⟩ exp

(
− ie
cℏ

∫
S1

A⃗ · d⃗l + ie

cℏ

∫
S2

A⃗ · d⃗l
)}

= ⟨Ψ1|Ψ1⟩+ ⟨Ψ2|Ψ2⟩+ 2Re

{
⟨Ψ2|Ψ1⟩ exp

(
− ie
cℏ

∮
A⃗ · d⃗l

)}
= ⟨Ψ1|Ψ1⟩+ ⟨Ψ2|Ψ2⟩+ 2Re

{
⟨Ψ2|Ψ1⟩ exp

(
−2πi Φ

Φ0

)}
(20.38)

Thus, the quantum interference is now modulated by the A-B flux Φ. That is, tuning the
flux should turn a dark fringe at Φ = 0 to a bright fringe at Φ0

2
, and vice-versa. Note that

at Φ = nΦ0, n ∈ Z, the interference pattern remains invariant.

× ———– ×

The Aharonov-Bohm phase as an example of a Berry (geometric) phase Consider
the bound state A-B effect/QPOR in which we get twisted boundary conditions:

Ψ(ϕ+ 2π) = exp

(
−2πi Φ

Φ0

)
ψ(ϕ) (20.39)

This shows that upon completing a closed path in real phase, the particle has picked up
a non-trivial phase which is directly related to the AB flux. This is a special case of a so
called geometric phase. This was discovered by Pancharatnam in quantum optics, and later
by Berry more generally in quantum physics. The topic of geometric phases has become
increasingly popular in physics since its discovery, and appears to play an important role in
all kinds of contexts.
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Chapter 21

Particle Tunneling in a Double Well

The problem of a quantum particle placed in a double well, and tunneling between the two
wells (whereas clasically, you would have expected it to sit still in any one of the two wells)
is a protoypical problem in quantum mechanics. This problem appears in the quantum
mechanical description of the possible conformations of some simple molecules such as am-
monia (NH3, where the Nitrogen atom can lie either above or below the plane of the three
Hydrogen atoms), various simple problems in quantum optics (e.g., lasing), nuclear magnetic
resonance, the physics of semiconductors (e.g., the tunnel diode) etc. Below, we set up the
simplest version of the problem and learn its solution.

21.1 The symmetric double well

Figure 21.1: Double well potential

Consider a 1D potential of the form in
fig. 21.1, with parity symmetry about
the y−axis (x = 0). Deep inside ei-
ther of the two wells, we can expect a
particle to be bound (classically, at the
bottom) with the quantum mechanical
bound states that can be obtained by ap-
proximating the well by a harmonic po-
tential. This potential is represented by a
red curve in the figure. However, this is
only true at the zeroth level (that is, for
two isolated wells).

We assume that, for the case of symmetric wells, the eigenspectrum for the harmonic approx-
imation will give us a set of discrete states. Further, the eigenspectra of these two wells are
identical to one another, and therefore degenerate as well. We now consider only the lowest
state in each of the wells (which are also degenerate with one another, at an energy given by
ℏω) and proceed by considering the fact that these two wells are really not disconnected from
one another, i.e., the potential barrier between them is finite. Also, note that the symmetric
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nature of potential reflects on its parity (i.e., right-left symmetry).

Any quantum-mechanical tunneling between
the symmetrically placed degenerate energy
levels and across the potential barrier (of
height V0) will certainly lift this degeneracy
into two states.

|Ψs⟩ =
1√
2
(|Ψ(a)⟩+ |Ψ(−a)⟩) ;Es =

ℏω
2

+
∆

2

|Ψa⟩ =
1√
2
(|Ψ(a)⟩ − |Ψ(−a)⟩) ;Ea =

ℏω
2
− ∆

2
(21.1)

Figure 21.2: Splitting of the degenerate levels.
Green-asymmetric level, red-symmetric level

The symmetric state |Ψs⟩ has its energy lowered by ∆
2
, while the anti-symmetric state |Ψa⟩

has its energy raised by the same amount. The ground state has the same symmetry as the
potential, the parity symmetry (recall the infinitely deep 1D square well). The two states
are shown in fig. 21.3.

Figure 21.3: Symmetric and asymmetric wavefunctions produced under splitting

How can we estimate ∆? The quantum-mechanical tunneling amplitude between the two
initially degenerate levels can be written as

t̃ = C1e
−Γ t

ℏ (21.2)

Γ is the decay rate of particle in either of the two levels. Thus, with a degenerate energy level
E0 =

ℏω
2

(which acts as the inverse lifetime of the state), we can write down the constant in
the tunneling amplitude as C1 ∈ C. Written in the basis of these lowest states in the two
wells, the form of the effective Hamiltonian matrix which acts on these degenerate levels is

Heff =

(
E0 t̃
t̃∗ E0

)
, (21.3)

where E0 ≡ ℏω (as discussed above), and the t̃ tunneling matrix element connects the
two degenerate states. C1 and Γ can be computed using advanced methods like WKB
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approximation and instanton analysis (which you will hopefully learn in advanced courses
in quantum mechanics). Diagonalizing the Hamiltonian matrix gives

(E0 − λ)2 = |t|2 = C2
1e

−2Γ t
ℏ

=⇒ E0 − λ1,2 = ±|C1|e−Γ t
ℏ

=⇒ λ1 = E0 − |C1|e−Γ t
ℏ , λ2 = E0 + |C1|e−Γ t

ℏ

(21.4)

From eq. 21.1, we know that ∆ is equal to the difference in the two energy eigenvalues.
Therefore,

∆ = λ2 − λ1 = 2|C1|e−Γ t
ℏ (21.5)

This is the splitting in the energy levels induced by the tunneling Γ. Note that we had
actually solved this problem above in eq.(19.11) in section 18.2.

21.2 The asymmetric double well

For the case of asymmetric double well, the parity symmetry is explicitly lifted. This will
not immediately forbid tunnelling, but will instead make it asymmetric and strongly favour
the transitions towards the lower well. In this way, an increasing asymmetry will gradually
suppress the tunnelling. Thus, the stable ground state configuration is now of the particle in
the lower well. And what of the particle in the higher well? The particle, if placed there, can
certainly stay there, but there is a strong probability that it will tunnel out of this state and
towards the true ground state. This state is thus called metastable, and has a finite lifetime,
which comes about from the ability of the particle to tunnel out of it.

Figure 21.4: Asymmetric double well potential. Dotted line is the symmetric well. Green
lines are the transitions between the two wells.

We have even solved the problem of the asymmetric double well earlier. The Hamiltonian is
given by eq.(19.93) in section 18.9.1., and can be written as

Heff = AI + bσx + cσz , (21.6)
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where A denotes an overall constant shift in the double well potential, b the tunneling
amplitude and c the asymmetry between the two states. Please revisit the entire solution
given there, and you will immediately see the connection with how the aysmmetry between
the wells suppresses the tunneling between them.

21.3 Double Well on the Circle

Thus far, we have considered the case of tunneling for a system defined on an open spatial
interval. Recall that other than quantum tunneling, another manifestly quantum mechanical
phenomenon (from the perspective of particle mechanics) is quantum interference. While we
have encountered this in our discussion of the Feynman double slit gedanken (and it’s exper-
imental verification), we have also seen that such interference exists for particle dynamics on
the multiply connected manifold such as the circle. As shown in the previous chapter, this is
what led to appearance of the Aharanov-Bohm phase in that problem. We can now go one
step further and combine the phenomena of quantum tunneling and quantum interference.
In order to do so, we consider the problem of the double well potential on the circle. To do
so, we impose the potential V (ϕ) = V0 cos(2ϕ), where 0 ≤ ϕ ≤ 2π is the angular degree of
freedom on the circle. Note that V (ϕ) = V (ϕ + π) and V (−ϕ) = V (ϕ). This is clearly a
symmetric double well on the circle, with the two minima at ϕ = π/2, 3π/2 and maxima at
ϕ = 0, π.

Further, we consider an Aharonov-Bohm flux Φ threading the cicle on which the particle’s
dynamics is confined. Thus, we can now see that the tunneling amplitude factor in going
between the two wells (i.e., half-way across the circle, such that ϕfinal−ϕinitial = ±π for the
two oppositely directed tunneling pathways) is given by

t̃Φ = t̃(e
iπΦ
Φ0 + e

−iπΦ
Φ0 ) = 2t̃ cos

(
πΦ

Φ0

)
, (21.7)

where Φ0 = hc/e is the magnetic flux quantum and t̃ has already been defined above. The
effective Hamiltonian for this problem is then given by

Heff =

(
E0 t̃Φ
t̃∗Φ E0

)
. (21.8)

The tunnel splitting is then given by

∆ = 2t̃Φ = 4t̃ cos

(
πΦ

Φ0

)
. (21.9)

It is then easily seen that for the case of the AB flux Φ = (2n+1)
2

Φ0 , n ∈ Z, the tunnel
splitting vanishes, ∆→ 0 ! This is due to the AB-flux aided destructive quantum interference
between the two possible ways of tunneling between the two wells (i.e., along oppositely
directed pathways). Similarly, for the case of the AB flux Φ = nΦ0 , n ∈ Z, the tunnel
splitting is maximised, ∆ = 4t̃; this corresponds to constructive quantum interference ! In
this way, we can see that non-trivial quantum interference can either nullify or amplify the
effects of quantum mechanical tunneling.
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Chapter 22

The Landau Problem: 2D Electrons
in a perpendicular Magnetic field

22.1 The Eigenspectrum for the problem

Consider an electron in 2D placed in a perpendicular magnetic field. The Hamiltonian in its
most general form is

H =
1

2m

(
p⃗− e

c
A⃗
)2
− µS⃗ · B⃗ + u (r⃗) (22.1)

where B⃗ = Bẑ and u (r⃗) is some confining potential. Since [H,Sz] = 0, the spin and spatial
parts of the wavefunction will be separable. For the time being, we ignore the effects of u(r⃗),
and focus on solving what remains of the spatial part. We can write the Hamiltonian as

H0 =
1

2m

[
p2 − e

c

(
A⃗ · p⃗+ p⃗ · A⃗

)
+
e2

c2
A2

] [
B⃗ = ∇× A⃗

]
=

1

2m

[
p2 − e

c

(
iℏ∇ · A+ 2p⃗ · A⃗

)
+
e2

c2
A2

] [
∵
[
A⃗, p⃗

]
= iℏ∇ · A

] (22.2)

Now if we choose A⃗ such that ∇ · A = 0, this simplifies matters considerably (Landau).
Thus, following Landau, we choose

A⃗ = −Byx̂, such that ∇ · A = 0 (22.3)

The Hamiltonian becomes

H0 =
1

2m

[(
px +

eB

c
y

)2

+ p2y + p2z

]
(22.4)

Because H0 is a function of px, py, pz, y but not of x or z, we get

[H0, px] = [H0, pz] = 0 (22.5)

183



Figure 22.1: The first four Landau levels. Each level has a huge degeneracy.

That is, the particle is free in the x and z directions. Since the motion is in 2D, pz = 0. In x,
we have ψ(x) ∼ eipx

x
ℏ . In the y-direction, by replacing px with its eigenvalue and by defining

y0 =
pxc
|e|B and ω = |e|B

mc
, we get

H0 =
1

2m
p2y +

1

2
mω2 (y − y0)2 (22.6)

which is just a S.H.O in the y-direction. We can immediately write down the eigenvalues
and eigenfunctions.

E(px, n) =
p2x
2m

+

(
n+

1

2

)
ℏω

ψn(x, y) = ei
pxx
ℏ χn(y)

(22.7)

where χn(y) = cne
− (y−y0)

2

2ξ Hn

(
y−y0
ξ

)
, ξ =

√
ℏc
mω

. Hn is the Hermite polynomial of degree

n. The index n characterises the Landau levels. The first four Landau levels are shown in
fig. 22.1. Some wavefunctions are shown schematically in fig. 22.2.

To calculate the degeneracy of each level, we consider a finite sized 2D system of large but

finite area A = LxLy, such that lB =
√

ℏc
|e|B ≪ Lx, Ly. lB is the magnetic length. The

number of possible values of px (that is, states of the free eletron in the x-direction), in the
momentum interval ∆px, is given by the phase space ∆x∆px

ℏ . For ∆x = Lx, number of states
is

Lx∆p
max
x

ℏ
(22.8)

Now, px = |e|By0
x

, and ∆px = |e|B∆y0
c

with 0 ≤ ∆y0 ≤ Ly, which means ∆pmax
x = |e|BLy

c
.
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Figure 22.2: Wavefunctions in the n = 0 Landau level. y
(1)
0 = cp

(1)
x

|e|B , y
(2)
0 = cp

(2)
x

|e|B , |p
(2)
x | > |p(1)x |

Therefore, number of states is

Lx|e|BLy
ℏc

=
LxLy
2πℏc
|e|B

=
A

2πl2B
= NΦ (22.9)

The degeneracy per unit area is 1
2πl2B

.

22.2 Magnetic Translation Operators and non-commutativity

Defining Π⃗ = p⃗− e
c
A⃗, we see that

H0 =
1

2m
Π2 (22.10)

It is worth noting that

[Πx,Πy] =
[
px −

e

c
A⃗.py −

e

c
Ay

]
=
e

c
[py, Ax]−

e

c
[px, Ay]

= iℏ
e

c
(∇xAy −∇yAx)︸ ︷︷ ︸

=B

= iℏ
eB

c

= −iℏ
2

l2B
( ̸= 0)

(22.11)
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where l2B = ℏc
|e|B . Now,

[Πx, px] =
[
px −

e

c
Ax, px

]
=
e

c
[px, Ax] = 0 for perpendicular B-field

(22.12)

but
[Πx, py] =

[
px −

e

c
Ax, py

]
=
e

c
[py, Ax]

= −iℏe
c
∇yAx ̸= 0 for perpendicular B-field

(22.13)

Similarly,
[Πy, py] = 0 for perpendicular B-field (22.14)

and
[Πy, px] = iℏ

e

c
∇xAy ̸= 0 for perpendicular B-field (22.15)

In fact,
[
H0, Π⃗

]
̸= 0 either, from above. Thus, neither p̂ nor Π̂ make good translation

operators. In fact, the generator of translations in the presence of a magnetic field is

K̂ = Π̂ +
e

c
B⃗ × r⃗

= p⃗− e

c
A⃗+

e

c
Bk̂×

(
xî+ yĵ + zk̂

)
= p⃗− e

c
A⃗+

e

c
B
(
−yî+ xĵ

) (22.16)

We can now check that
[
Π̂, K̂

]
= 0, as follows:

[Πx, Kx] =

[
Πx,Πx −

eB

c
y

]
=

[
Πx,−

eBy

c

]
=

[
px −

eA

c
x,−eB

c
y

]
= 0

= [Πy, Ky]

(22.17)
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and

[Πx, Ky] =

[
Πx,Πy +

eB

c
x

]
= [Πx,Πy] +

[
Πx,

eB

c
x

]
= iℏ

eB

c
− eB

c
[x, px]︸ ︷︷ ︸
=iℏ

= 0

= [Πy, Kx]

(22.18)

These four commutators imply [
Π⃗, K

]
= 0 =

[
H0, K̂

]
(22.19)

such that translation by a vector δ⃗ is given by

t̂(δ) = e
i
ℏ δ⃗·K⃗ (22.20)

This operator is called the magnetic translation operator, because it causes translations in
the magnetic Brillouin zone. Note that

[Kx, Ky] =

[
Πx −

eB

c
y,Πy −

eB

c
x

]
= [Πx,Πy]−

eB

c
([x, pX ] + [y, py])

= −iℏ
2

l2B
− 2ie

ℏB
c

= −iℏ
2

l2B
+ 2i

ℏ2

l2B

[
l2B =

ℏc
|e|B

]
=
iℏ2

l2B
̸= 0

(22.21)

Then, we can show that

t̂(a)t̂(b)t̂(a)(−1)t̂(b)(−1) = e−
i
ℏ a⃗·K̂e−

i
ℏ b⃗·K̂e

i
ℏ a⃗·K̂e

i
ℏ b⃗·K̂

= exp

[
− i
ℏ
a⃗ · K̂ − i

ℏ
b⃗ · K̂ +

i

ℏ
b⃗ · K̂ +

i

ℏ
b⃗ · K̂ − 2

ℏ2
[
a⃗ · K̂, b⃗ · K̂

]]
= exp

[
−2 (aibj − ajbi)

KiKj

ℏ2

]
= exp

[
− (aibj − ajbi)

1

ℏ2
(KiKj −KjKi)

]
(22.22)

In the second step, we used the BCH relation. But since [Kx, Ky] = i ℏ
2

l2B
, we can write

t̂(a)t̂(b)t̂(a)(−1)t̂(b)(−1) = exp

[
−i 1
l2B

(
a⃗× b⃗

)
· ẑ
]

(22.23)
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as t̂(⃗a)t̂(⃗b) = exp
[
− i
l2B

(
a⃗× b⃗

)
· ẑ
]
t̂(⃗b)t̂(⃗a) → magnetic algebra. Furthermore, the trans-

lation operators t̂(⃗a) form a group in the sense that they obey the following composition
law:

t̂(⃗a)t̂(⃗b) = exp

[
i

2l2B

(
a⃗× b⃗

)
· ẑ
]
t̂(⃗b+ a⃗) (22.24)

The above relations tell us that in going around (translating) in a closed cycle, we have
picked up a phase:

e
− i

l2
B
(a⃗×b⃗)·ẑ

= e
−2πi

Φab
Φ0 (22.25)

where Φab = B
(
a⃗× b⃗

)
· ẑ is the flux enclosed in the plaquette of a⃗, b⃗,−a⃗ and −b⃗. This is the

familiar Aharanov-Bohm phase of the particle on a circle with an enclosed solenoidal flux!
Further, for NΦ = Φab

Φ0
∈ Z (an integer),[

t̂(⃗a), t̂(b̂)
]
= 0 (22.26)

That is, the magnetic translation operators in the x and y directions commute with one
another. GIven that

[
t̂(δ), H0

]
= 0, we can diagonalize H0, t̂(x) and t̂(y) simultaneously.

Thus, the generalised (twisted) boundary conditions now are

ΨΦ1Φ2 (..., xj + L1, yj, ...) = exp

[
−2πi

L2

NΦyj

]
ΨΦ1Φ2 (..., xj, yj, ...)

ΨΦ1Φ2 (..., xj, yj + L2, ...) = ΨΦ1Φ2 (..., xj, yj, ...)

(22.27)

22.2.1 The Landau Problem for N interacting electrons

Discuss the Tao-Haldane initial steps that lead to the COM and relative degrees of freedom.

� [
eiaΠ

c
x ,Πc

y
2
]
= Πc

y

[
eiaΠ

c
x ,Πc

y
2
]
+
[
eiaΠ

c
x ,Πc

y
2
]
Πc
y

= Πc
y ×

[
−aeBℏeiaΠc

x
]
+
[
−aeBℏeiaΠc

x
]
× Πc

y

[
Πc
α =

∑
j

Πjα, α = x, y

]
(22.28)

�

Hc =
1

2mNe

[(
Πc
x +

Neℏα1

L1

)2

+

(
Πc
y +

Neℏα2

L2

)2
]

Πe
x = −iℏ

∂

∂x
, Πc

y = −iℏ
∂

∂y
+ eBxNe

[
A⃗ = [0, eBx, 0]

] (22.29)

� Compute [
Πc
x,Π

c
y

]
=

[
−iℏ ∂

∂x
,NeeBx

]
= −iℏeBNe, [[x, px] = iℏ] (22.30)
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� Define pseudo-momenta:

Kx = Πc
x + eByNe − iℏ

∂

∂x
+ eByNe

Ky = Πc
y − eBxNe = −iℏ

∂

∂y

(22.31)

Compute
[Πc

x, Kx]︸ ︷︷ ︸
=0

, [Πc
x, Ky]︸ ︷︷ ︸
=0

,
[
Πc
y, Kx

]︸ ︷︷ ︸
check

,
[
Πc
y, Ky

]︸ ︷︷ ︸
=0

(22.32)

[
Πc
y, Kx

]
= −

[
iℏ
∂

∂y
+NeeBx,−iℏ

∂

∂x
+NeeBy

]
=

[
−iℏ ∂

∂y
,NeeBy

]
+

[
NeeBx,−iℏ

∂

∂x

]
= −iℏNeeB + iℏeNeB

= 0

(22.33)

Now compute [Kx, Ky].

[Kx, Ky] =

[
−iℏ ∂

∂x
+NeeBy,−iℏ

∂

∂y

]
= NeeB

[
y,−iℏ ∂

∂y

]
= −iℏeBNe

= −
[
Πc
x,Π

c
y

]
(22.34)

� Compute [Kx, Hc] = 0, [Ky, Hc] = 0

� Define

T1 = exp

{
i
L1Kx

Nsℏ

}
, T2 = exp

{
i
L2Ky

Nsℏ

}
,

ℏNs

e
= BL1L2 . (22.35)

� Compute T−1
1 T−1

2 T1T2. Use the fact that e−Ae−BeAeB = e−[A,B] if [A, [A,B]] = 0 =
[B, [A,B]] and the BCH relation eAeB = exp

[
A+B + 1

2
[A,B]

]
. Then,

T−1
1 T−1

2 T1T2 = exp

[
−L1L2

N2
s ℏ2

[Kx, Ky]

]
= exp

[
−iℏeBL1L2

N2
s ℏ2

Ne

] [
BL1L2 =

h

e
Ns

]
= exp

[
−i
eh
e
Ns

N2
s ℏ

Ne

]
[Ns = NΦ]

= exp

[
−i2πNe

Ns

]
(22.36)
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� Define

γ = − 1

2π
Im
[
ln
(
T−1
1 T−1

2 T1T2
)]

(22.37)

Compute

γ = − 1

2π
Im

[
ln exp

(
−i2πNe

Ns

)]
= − 1

2π
(−2π) Ne

Ns

=
Ne

Ns

(22.38)

In the QHE, σ2D
H = γ e

2

h
. Thus we can see that

T1 |ψc0⟩ = T1ψ
c
0 (x1, y1, ..., xjyj, ...)

= T1ψ
c
0 (x1 + L, y1, ..., xj + L, yj, ...)

(22.39)

190



Bibliography

[1] David J. Griffiths. Introduction to Quantum Mechanics (2nd Edition). Pearson Prentice
Hall, 2004.

[2] Donald A. Mcquarrie. Quantum Chemistry, 2nd edition. University Science Books,U.S.,
2 edition, 2007.

191


	Contents
	Introduction
	Getting started
	The Schrödinger's Cat gedanken
	A historical background

	The Origins of Quantum Theory
	Solving the Blackbody Radiation Spectrum Puzzle
	Blackbody Radiation
	Classical theory (heuristic derivation)
	Planck's Idea

	The Dual Nature of Light
	Wave-like: Diffraction and Interference
	Particle-like: the Photoelectric effect
	de Broglie's Idea

	The Dual Nature of Matter
	Double-slit experiment with pellets
	Double-slit experiment with electrons

	Spying on the Electrons
	Fundamental Postulates of Quantum mechanics
	Bohr's Atom
	Conclusions

	The Foundations of Quantum Mechanics
	Recap: Fundamental Postulates of Quantum mechanics
	Heuristic derivation of the Schrödinger equation

	Physical Meaning of 
	Observables, Operators and Expectation values

	Heisenberg's Uncertainty principle
	The case of a wavepacket
	The -ray microscope gedanken
	A derivation of the HUP for wavepackets

	The Time Dependent and Independent Schrödinger Equations (TDSE & TISE)
	Qualitative Solutions and the origin of Quantisation

	Formalism I : Operators, Eigenfunctions and Eigenvalues
	Operators, Eigenfunctions and Eigenvalues
	Definition of an operator
	Eigenfunctions and Eigenvalues
	Commutators

	Important properties of Eigenstates

	Schrödinger Wave Mechanics: Bound states
	Infinite square well/ Particle in a Box
	Simple Harmonic Oscillator
	Algebraic Method
	Analytic Method

	Free particle
	Scattering Processes and Quantum Tunneling
	Step potential
	Potential Barrier & Tunneling

	Time Independent Schrödinger Equation (TISE) in 3D
	The Particle in a 3D Box

	Formalism II : Vector Spaces in Quantum Mechanics
	Vector Spaces
	Dimension of a vector space:
	More on the Inner Product

	The Dirac Bra-Ket Notation
	Properties of |, | and |
	Operators

	The Angular Momentum problem: first passage
	Introduction
	Total Angular Momentum

	Orbital Angular Momentum Eigenstates
	Central Potential Problem
	The Hydrogen Atom
	Spin Angular Momentum
	Evidence for spin
	The Zeeman Effect
	The Stern-Gerlach Experiment

	Eigenstates and Eigenvalues of the Spin Operators
	Matrix Representation of Spin
	Properties of Pauli matrices
	Eigenstates of Sx
	Spin Precession
	Spin is along +z at t=0
	Spin is along +x at t=0

	Spin and spatial degrees of freedom
	Addition of two angular momenta
	Addition of two spin-half operators


	A system of Interacting Spins
	Eigenspectrum of the Heisenberg spin exchange problem
	Symmetries, symmetry breaking and quantum fluctuations
	Entanglement of the Ground State: preliminaries
	A quick introduction to Density Matrices
	Reduced Density Matrices and von-Neumann Entropy
	Entanglement Entropy of the Singlet, and what it tells us about Schrödinger's Cat
	The EPR Paradox
	The 2-spins in the Presence of a Magnetic Field: a toy model for a quantum phase transition
	Wavefunction Collapse, Measurement and Projection
	Measurement, Symmetry breaking and non-unitarity

	The Qubit and quantum information processing

	Quantum Particle On a Ring (QPOR) Problem
	The importance of boundary conditions
	Hamiltonian, Eigenstates and Eigenvalues
	Effect of Flux Insertion and Spectral Flow
	The Field-Free Picture

	Particle Tunneling in a Double Well
	The symmetric double well
	The asymmetric double well
	Double Well on the Circle

	The Landau Problem: 2D Electrons in a perpendicular Magnetic field
	The Eigenspectrum for the problem
	Magnetic Translation Operators and non-commutativity
	The Landau Problem for N interacting electrons


	Bibliography

